Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conaway Lab Identifies Novel Mechanism for Regulation of Gene Expression

30.09.2008
The Stowers Institute’s Conaway Lab has demonstrated that an enzyme called Uch37 is kept in check when it is part of a human chromatin remodeling complex, INO80. The results were published in today’s issue of Molecular Cell.

Uch37 is a “deubiquitinating enzyme” that can remove protein tags (called ubiquitin) from other proteins. The presence of one kind of ubiquitin tag on a protein can mark it for destruction, but others serve as marks to affect the activity of a protein. INO80 is a chromatin remodeling complex that is believed to function in both gene regulation and DNA repair by “unpacking” DNA from nucleosomes to allow access to chromosomal DNA.

Previously, the Conaway Lab demonstrated that Uch37 is associated with another multiprotein complex, the proteasome — a large protein complex that degrades unneeded or damaged proteins. In the new paper, the team shows that when bound to INO80, Uch37 can also be activated in the presence of proteasomes. Although the mechanism involved isn’t totally clear, it seems to occur via a “touch and go” mechanism, in which proteasomes interact transiently with Uch37.

“Our findings suggest that activation of INO80-associated Uch37 by transient association of proteasomes with the INO80 complex could be one way proteasomes help to regulate gene expression,” said Tingting Yao, Ph.D., Postdoctoral Research Fellow and lead author on the paper.

“Tingting's discovery of communication between INO80 and the proteasome provides new clues into the functions of both of these regulatory complexes,” said Joan Conaway, Ph.D., Investigator and senior author on the paper. “In addition, it provides new insights into how deubiquitinating enzymes can be regulated — the ability to regulate these enzymes is very important because promiscuous removal of ubiquitin marks could lead to a failure to regulate properly the activities or levels of key enzymes and proteins in cells.”

The ultimate goal of the Conaway Lab is to understand how genes are turned on and off during transcription and how regulation of chromatin structure contributes to this process. Proper gene regulation is key for normal development and functioning of all organisms, including humans. Misregulation of gene expression can contribute to many diseases.

Additional contribution authors from the Stowers Institute include Jingji Jin, Ph.D., Senior Research Associate; Yong Cai, Ph.D., Research Specialist I; Hidehisa Takahashi, Ph.D., Postdoctoral Research Associate; Selene Swanson, Research Specialist II; Michael Washburn, Ph.D., Director of Proteomics; Laurence Florens, Ph.D., Managing Director of Proteomics; and Ron Conaway, Ph.D., Investigator. Contributing authors from other institutions include Ling Song, Ph.D., Carver College of Medicine, University of Iowa; and Robert Cohen, Ph.D., Bloomberg School of Public Health, Johns Hopkins University.

Drs. Joan and Ron Conaway hold faculty appointments in the Department of Biochemistry & Molecular Biology at The University of Kansas School of Medicine. Learn more about their work at www.stowers-institute.org/labs/ConawayLab.asp.

About the Stowers Institute
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>