Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complete skin regeneration system of fish unraveled

24.04.2018

Fish and amphibians such as newts are capable of advanced tissue regeneration and can regenerate tissue without scar tissue to their perfect original shape, should they lose organs such as their limbs. Unraveling the mechanisms of regeneration and homeostasis of tissues has been one of the main issues in recent biology, anticipated for its potential for application in human regenerative medicine. Not much had been known about the mechanism and the source of cells supplied in the regeneration of tissue.

The research group led by Tokyo Tech's Associate Professor Atsushi Kawakami, graduate student Eri Shibata, and others used the regeneration of zebrafish fins as a model and labeled the cells of the regenerative tissue with fluorescence (Figure 1) using a genetic cell-labeling technique (Cre-loxP site-specific recombination) and tracked their fates over weeks. As a result, they determined that epithelial cells near a wound follow heterogeneous cell fates.


Cre-loxP was used as the cell-labeling technique. In this case, EGFP (enhanced green fluorescent protein) expression in the regenerative epidermis of zebrafish fins was switched on by using recombination enzyme Cre expressed under the regulation of the gene fibronectin 1b. Recombination can be induced by using a compound called tamoxifen (TAM).

*dpa: the number of days since amputation

Credit: Tokyo Institute of Technology

The first group of epithelial cells which are initially recruited to the wound cover the wound but disappear within a few days by apoptosis. The second group of epithelial cells which arrive later become the cells forming the regenerated skin.

However, many of these regenerated skin cells are moved toward the end of the fin and disappear about one to two weeks. In investigating the source of the replenishing skin cells, it was found that numerous new epithelial cells are supplied in the regeneration process by a large area of skin which contain stem cells and become active in cell proliferation.

Intriguingly, it became clear that skin cells in the regeneration process do not undergo special processes such as de-differentiating into stem cells and regenerating, but existing stem cells in the basal layer and differentiated cells in the surface layer each proliferate with their own characteristics intact to regenerate the skin.

Based on this study, it is conceivable that regeneration of skin would become possible by controlling the autonomous proliferation of stem cells in the basal layer in other vertebrates as well, including humans.

If the mechanism of skin regeneration discovered in this study proves to be the same in humans, it is expected to be used in the future to unravel the causes of various skin diseases, in regenerative medicine research, and for other purposes.

###

Reference

Authors: Eri Shibata, Kazunori Ando, Emiko Murase, and Atsushi Kawakami*
Title of original paper: Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration
Journal: Development
DOI: dev.162016 doi: 10.1242/

Affiliation: School of Life Science and Technology,, Tokyo Institute of Technology

*Corresponding authors email: atkawaka@bio.titech.ac.jp

Media Contact

Tadashi Okamura
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Tadashi Okamura | EurekAlert!

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>