Complete skin regeneration system of fish unraveled

Cre-loxP was used as the cell-labeling technique. In this case, EGFP (enhanced green fluorescent protein) expression in the regenerative epidermis of zebrafish fins was switched on by using recombination enzyme Cre expressed under the regulation of the gene fibronectin 1b. Recombination can be induced by using a compound called tamoxifen (TAM). *dpa: the number of days since amputation Credit: Tokyo Institute of Technology

The research group led by Tokyo Tech's Associate Professor Atsushi Kawakami, graduate student Eri Shibata, and others used the regeneration of zebrafish fins as a model and labeled the cells of the regenerative tissue with fluorescence (Figure 1) using a genetic cell-labeling technique (Cre-loxP site-specific recombination) and tracked their fates over weeks. As a result, they determined that epithelial cells near a wound follow heterogeneous cell fates.

The first group of epithelial cells which are initially recruited to the wound cover the wound but disappear within a few days by apoptosis. The second group of epithelial cells which arrive later become the cells forming the regenerated skin.

However, many of these regenerated skin cells are moved toward the end of the fin and disappear about one to two weeks. In investigating the source of the replenishing skin cells, it was found that numerous new epithelial cells are supplied in the regeneration process by a large area of skin which contain stem cells and become active in cell proliferation.

Intriguingly, it became clear that skin cells in the regeneration process do not undergo special processes such as de-differentiating into stem cells and regenerating, but existing stem cells in the basal layer and differentiated cells in the surface layer each proliferate with their own characteristics intact to regenerate the skin.

Based on this study, it is conceivable that regeneration of skin would become possible by controlling the autonomous proliferation of stem cells in the basal layer in other vertebrates as well, including humans.

If the mechanism of skin regeneration discovered in this study proves to be the same in humans, it is expected to be used in the future to unravel the causes of various skin diseases, in regenerative medicine research, and for other purposes.

###

Reference

Authors: Eri Shibata, Kazunori Ando, Emiko Murase, and Atsushi Kawakami*
Title of original paper: Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration
Journal: Development
DOI: dev.162016 doi: 10.1242/

Affiliation: School of Life Science and Technology,, Tokyo Institute of Technology

*Corresponding authors email: atkawaka@bio.titech.ac.jp

Media Contact

Tadashi Okamura
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Media Contact

Tadashi Okamura EurekAlert!

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close