Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cohesin - a molecular motor that folds our genome

22.11.2019

New insights into the process of DNA-looping change our view of how the genome is organised within cells. The discoveries by IMP-researchers elucidate a fundamental mechanism of life and settle a decade long scientific dispute.

To pack the genetic information, inscribed in roughly two metres of DNA, into its nucleus, a human cell must achieve the equivalent of fitting an 80-kilometre-long thread into a sphere the size of a soccer ball. Looking through his microscope back in 1882, German biologist Walther Flemming already glimpsed at how this trick is done. What he saw were loops of DNA-strands inside the nucleus of an egg-cell that reminded him of the brushes that were used at the time to clean gas lanterns - and so he named these structures lampbrush chromosomes, without an idea of what they were and which purpose they served.


It took many decades to identify the lampbrush chromosomes as strands of DNA neatly folded into loops, even longer to realise that DNA is folded into such structures in all cells and at all times, and it took until now to find out how this folding is done. In a paper published by the journal Science, researchers from Jan-Michael Peters’ lab at the Institute of Molecular Pathology (IMP) in Vienna demonstrate for the first time that a molecular machine actively and purposefully folds DNA via “loop extrusion” and thereby fulfils several important functions in the interphase cell.

That the process of looping DNA is neither random nor arbitrary is evident from how evolutionary ancient it is. All organisms do it, from bacteria to humans. The primeval function of the folding mechanism is still unknown and we may never find out, but some vital tasks have been discovered in recent years. By looping DNA, distant regions on the large molecule are brought into close proximity and are able to interact. This physical contact plays an important role in gene regulation, where DNA segments called enhancers influence which genes are active. Looping is also essential for the ability of immune cells to produce a diverse array of antibodies.

An idea of how the loops are held in place emerged from work done by Kerstin Wendt, a former postdoc in the lab of Jan-Michael Peters at the IMP. In 2008 her results suggested that the protein-complex cohesin was doing the trick. This large molecule had been identified ten years prior in the lab of IMP-scientist Kim Nasmyth as the molecular glue that holds sister chromatids together during early mitosis, a discovery for which he was recently awarded the Breakthrough Prize. Conveniently ring-shaped, the cohesin complex was thought to clamp onto DNA like a carabiner.

For a long time, the folded state of DNA was regarded as a rather static configuration, with cohesin-molecules acting much like the rings on a curtain rod, sliding onto DNA without binding to it. An idea of how DNA looping might be achieved came from several scientists, including MIT physicist Leonid Mirny. He proposed that cohesin would initially form tiny loops of DNA which would grow bigger and bigger until cohesin would be stopped in this “extrusion” process by boundaries on the DNA which would define where the loops would be anchored. However, this loop extrusion hypothesis was too radically different from the established view of DNA being static and cohesin forming passive rings around it and was therefore received with scepticism by many biologists. It is thanks to the ingenuity and laborious experiments by Iain Davidson and his colleagues that the controversy can now be resolved.

The team involving Davidson, a senior postdoc in the Peters-lab at the IMP, was able to reconstitute cohesin function in a simplified system in vitro. Thus, he could watch how single cohesin molecules rapidly extruded single pieces of DNA into loops, exactly as Mirny and others had postulated. His findings, published online on 21 November 2019, are far reaching and change the way we perceive our genome in several different aspects:

• Rather than being static, the genome is a highly dynamic structure.
• The folding of genomic DNA is an actively regulated process. It involves looping the DNA molecule by way of extrusion, with many loops being constantly in motion.
• The looping process is mediated by cohesin which must therefore be a molecular motor, similar to other motor proteins such as myosin which makes our muscles move.
• The cohesin molecule does not just form carabiner-like rings around DNA but must attach to DNA dynamically via several binding sites to be able to fold it. This must also be true for a related molecule, condensin, as has been shown last year.

“This is a real paradigm shift”, says IMP director Jan-Michael Peters. “Earlier observations already gave us some hints, but the work of Iain Davidson is now proof. In my scientific life, few other discoveries were as far-reaching as this one.”

The discoveries are expected to soon become textbook knowledge, as have other fundamental discoveries about our genome such as its duplication by semi-conservative DNA replication or its rearrangement by homologous recombination. For the IMP researchers, the next important question to address is how exactly cohesin binds to DNA, how it then moves the DNA so that it is folded into loops, and how this process is controlled. They have already shown that a protein complex called NIPBL-MAU2 is essential for cohesin’s motor function and not just for loading cohesin onto DNA, as was previously believed.

“We can now use our setup to zoom in further into the intricate molecular process of DNA looping”, says Iain Davidson, first author of the new paper. “Solving this mechanism may also help us to understand why certain human diseases are caused by mutations in the cohesin complex.”

Wissenschaftliche Ansprechpartner:

Iain Davidson, IMP Senior Postdoc
iain.davidson@imp.ac.at

Originalpublikation:

The paper “DNA loop extrusion by human cohesin” by I.F. Davidson et al. was published online by the journal Science on Thursday, 21 November, 2019.

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>