Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of drugs for the reversible inhibition of proteasomes

23.11.2011
Scientists discover new approach for cancer medication

As the "recycling plant" of the cell, the proteasome regulates vitally important functions. When it is inhibited, the cell chokes on its own waste. Cancer cells, in particular, are very sensitive because they need the proteasome for their uncontrolled growth.


Biochemists at the Technische Universitaet Muenchen have identified a hydroxy urea motif as the lead structure of a new class of drugs that reversibly blocks the proteasome. To shed further light on this, the scientists conducted a crystal structure analysis. The outcome was that the hydroxyurea motif attacked the proteasome in a completely different manner than all other previously known inhibitors. Because of this property, the newly discovered structures work more specifically than other proteasome inhibitors and are thus expected to lead to less severe adverse side effects. Credit: Chair of Biochemistry, Technische Universitaet Muenchen

Biochemists at the Technische Universitaet Muenchen (TUM) have now identified the lead structure of a new class of drugs that attacks the proteasome in an unusual way. New medication could be developed on the basis of this previously unknown binding mechanism. The scientists report their results in the scientific journal Angewandte Chemie.

The proteasome, a large protein complex, carries out a vitally important function in the cells of the body. Similar to a recycling plant, it decomposes unneeded proteins into short pieces and recycles them. In this way it controls a number of functions in the cell. It regulates cell growth and division, decomposes damaged proteins and also acts as a key partner of the immune system in immune defense and inflammatory reactions. Because it is involved in so many important mechanisms within the cell, the proteasome is also associated with many diseases such as cancer, mucoviscidosis and a whole series of neurodegenerative disorders such as Parkinson's or Alzheimer's disease.

Due to its significant role in the growth of cancer cells, in recent years the proteasome has taken center stage in pharmacological research as a starting point for cancer medication. When it becomes inhibited, the growth of cancer cells slows down. Bortezomib, the first drug to apply this strategy, generates revenues of over one billion US dollars per year in the meantime. It is used against multiple myeloma, a cancer disease of the bone marrow. Yet in spite of all its successes, the proteasome inhibitors currently in use often have severe disadvantages. As a result of their high reactivity they attack other proteins, too, thereby damaging not only cancer cells but also other healthy cells.

The search for alternatives conducted by a group of scientists headed by Professor Michael Groll, who holds the Chair of Biochemistry in the Department of Chemistry at the TU München, in collaboration with Professor Robert Huber, Director Emeritus at the Max-Plank Institute of Biochemistry and Dr. Stefan Hillebrand from Bayer CropScience, has now borne fruit: In a high throughput screening, the scientists examined a substance library of 200,000 potential agents in their quest to identify proteasome inhibitors – and they were successful. They identified a new structure with the so-called N-hydroxyurea motif, which reacts not only reversibly but above all specifically with the active nucleus of the proteasome. The structure inhibits the function of particular subunits of the protein complexes, which are catalytically active, and thus incapacitates the enzyme. Because of this property, the newly discovered hydroxyurea structures work more specifically than other proteasome inhibitors and are thus expected to lead to less severe adverse side effects.

The scientists were already familiar with the basic hydroxyurea structure, albeit in a completely different context. The substance in question is a derivative of the agent zileuton, which is used to treat asthma. Zileuton itself does not influence the proteasome, but its derivative, which had so far received little attention, does. "We have now found a completely new application for this previously known class of substances," explains Michael Groll. "This is of great advantage, because there are already clinical trials that give us first indications of how this class of substances behaves in the human body."

The initial structure originally discovered in the database inhibited the proteasome very specifically, but not terribly effectively. In order to modify the substance in such a way that it also works in lower concentrations – such as those required for medication – it was an important next step to understand how exactly the structure attacks the proteasome. To shed further light on this, the scientists conducted a crystal structure analysis. The outcome was that the hydroxyurea motif attacked the proteasome in a completely different manner than all other previously known inhibitors. It reacts via hitherto unknown binding pockets that may serve as starting points for the development of the new medication agents.

Starting from preliminary modeling studies, the researchers synthesized a series of different derivatives of the agent, which were then examined using X-ray crystallography and activity tests to optimize the effectiveness of the structure. The results showed that the proteasome inhibiting activity of the hydroxyurea derivatives depends on the two side chains attached to the basic structure.

Because the proteasome is contained in every cell and involved in numerous cellular functions the new inhibiting structure offers a whole range of applications, not only in the field of oncology. In the context of autoimmune diseases, an inhibition of the immunoproteasome, a derivative of the proteasome, might play an important role. In the case of autoimmune diseases, including some forms of rheumatism, the immune system attacks the body's own tissue. If the immunoproteasome is inhibited such over-reactions might be weakened. In future studies Professor Groll's team plans to improve the effectiveness of the hydroxyurea structure via experiments on cell cultures.

Original publication:

New class of non-covalent proteasome inhibitors: the hydroxyureas, Nerea Gallastegui, Phillip Beck, Marcelino Arciniega, Robert Huber, Stefan Hillebrand and Michael Groll, Angewandte Chemie, DOI: 10.1002/anie.201106010 Link: http://dx.doi.org/10.1002/anie.201106010

This work was supported by the German Research Foundation (SFB 594 and Cluster of Excellence Center for Integrated Protein Science Munich). The measurements were performed at the PXI beamline at the Paul Scherrer Institute (Villigen, Switzerland).

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>