Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists develop innovative nano-sensors for multiple proteins

31.07.2013
Test strips bearing gold nano-particles as sensor elements can detect numerous proteins simultaneously / New concept with potential applications in medicine, environmental technology, and foodstuff analysis

Chemists at Johannes Gutenberg University Mainz (JGU) have developed a new method for parallel protein analysis that is, in principle, capable of identifying hundreds or even thousands of different proteins. It could be used to detect the presence of viruses and identify their type in tiny samples. At the same time, it is very cost-effective and quick.


When proteins dock with the specifically functionalized nano-particles, the sensor elements change color.
source: Institute of Physical Chemistry, JGU

"We see possible applications of this technique in medicine, where it could be used, for example, for the rapid diagnosis of a wide range of diseases. It would be almost as easy to use as a pregnancy test strip," said Professor Carsten Sönnichsen of the Institute of Physical Chemistry.

The test involves placing a tiny drop of blood, saliva, or other bodily fluid on a small test strip, which is then placed in a device developed at the JGU Institute of Physical Chemistry. This device is able to identify the specific proteins in the fluid and thus allows to quickly and reliably differentiate between harmless microorganisms and dangerous pathogens.

In order to detect the many different substances present in a small sample, the sensors need to be as tiny as possible, preferably the size of nano-particles. Sönnichsen's team of scientists have designed a sensor no larger than the head of a pin but capable of performing a hundred different individual tests on a surface that is only of one-tenth of a square millimeter in area. The 'test strips' consist of glass capillary tubes that have gold nano-particles as sensor elements on their internal surfaces.

"We first prepare our nano-particles using short DNA strands, each of which binds to a specific type of protein," explained Janak Prasad, who developed the functionalization method. When a protein docks with one of these special DNA strands, called aptamers, the corresponding nano-particle changes its color. The color changes can be detected with the aid of a spectrometer. For this purpose, the capillary tubes are placed under a microscope designed, constructed, and provided with the necessary software by the Mainz-based team of chemists.

"We demonstrate a new approach for a multiplexed assay that detects multiple proteins simultaneously by letting a fluid flow past the randomly positioned gold nano-rods," explained Christina Rosman, first author of the study. The team from JGU's Institute of Physical Chemistry used four different target proteins to demonstrate the viability of the new concept, its ability to detect concentrations in the nanomolar range, and the possibility to recycle the sensors for more than one analysis.

"We see the potential to extend our method to the simultaneous detection of hundreds or even thousands of different target substances," assert the authors in their article published in the June 2013 issue of the journal Nano Letters. Low-cost serial production of the sensors is feasible if advanced nano-fabrication methods such as nano-printing or optical trapping are used.

There are manifold possible applications of a test for multiple targets in a single procedure. The low-cost sensors could be directly used by physicians in their practices in order to detect and discriminate various types of flu viruses with which their patients could be infected. In addition, the technique would also be suitable for detecting the presence of toxins in the environment or in food, particularly in liquids such as milk or baby food, or the presence of doping or other illicit drugs.

Support for the research on this novel multiplexed protein sensor was provided by the Graduate School of Excellence 'Materials Science in Mainz' (MAINZ) and the European Research Council (ERC) 'Single Sense' project.

Publication:
Christina Rosman et al.
Multiplexed Plasmon Sensor for Rapid Label-free Analyte Detection
Nano Letters, 21 June 2013
DOI: 10.1021/nl401354f
Further information:
Professor Dr. Carsten Sönnichsen
Institute of Physical Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20639 or +49 6131 39-24313
fax +49 6131 39-26747
e-mail: carsten.soennichsen@uni-mainz.de
http://www.nano-bio-tech.de/
Weitere Informationen:
http://www.uni-mainz.de/presse/16589_ENG_HTML.php - press release ;
http://pubs.acs.org/doi/abs/10.1021/nl401354f - Article in Nano Letters

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: CHEMISTRY DNA DNA strand JGU Letters Nano Physical chemists specific protein

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>