Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists develop innovative nano-sensors for multiple proteins

31.07.2013
Test strips bearing gold nano-particles as sensor elements can detect numerous proteins simultaneously / New concept with potential applications in medicine, environmental technology, and foodstuff analysis

Chemists at Johannes Gutenberg University Mainz (JGU) have developed a new method for parallel protein analysis that is, in principle, capable of identifying hundreds or even thousands of different proteins. It could be used to detect the presence of viruses and identify their type in tiny samples. At the same time, it is very cost-effective and quick.


When proteins dock with the specifically functionalized nano-particles, the sensor elements change color.
source: Institute of Physical Chemistry, JGU

"We see possible applications of this technique in medicine, where it could be used, for example, for the rapid diagnosis of a wide range of diseases. It would be almost as easy to use as a pregnancy test strip," said Professor Carsten Sönnichsen of the Institute of Physical Chemistry.

The test involves placing a tiny drop of blood, saliva, or other bodily fluid on a small test strip, which is then placed in a device developed at the JGU Institute of Physical Chemistry. This device is able to identify the specific proteins in the fluid and thus allows to quickly and reliably differentiate between harmless microorganisms and dangerous pathogens.

In order to detect the many different substances present in a small sample, the sensors need to be as tiny as possible, preferably the size of nano-particles. Sönnichsen's team of scientists have designed a sensor no larger than the head of a pin but capable of performing a hundred different individual tests on a surface that is only of one-tenth of a square millimeter in area. The 'test strips' consist of glass capillary tubes that have gold nano-particles as sensor elements on their internal surfaces.

"We first prepare our nano-particles using short DNA strands, each of which binds to a specific type of protein," explained Janak Prasad, who developed the functionalization method. When a protein docks with one of these special DNA strands, called aptamers, the corresponding nano-particle changes its color. The color changes can be detected with the aid of a spectrometer. For this purpose, the capillary tubes are placed under a microscope designed, constructed, and provided with the necessary software by the Mainz-based team of chemists.

"We demonstrate a new approach for a multiplexed assay that detects multiple proteins simultaneously by letting a fluid flow past the randomly positioned gold nano-rods," explained Christina Rosman, first author of the study. The team from JGU's Institute of Physical Chemistry used four different target proteins to demonstrate the viability of the new concept, its ability to detect concentrations in the nanomolar range, and the possibility to recycle the sensors for more than one analysis.

"We see the potential to extend our method to the simultaneous detection of hundreds or even thousands of different target substances," assert the authors in their article published in the June 2013 issue of the journal Nano Letters. Low-cost serial production of the sensors is feasible if advanced nano-fabrication methods such as nano-printing or optical trapping are used.

There are manifold possible applications of a test for multiple targets in a single procedure. The low-cost sensors could be directly used by physicians in their practices in order to detect and discriminate various types of flu viruses with which their patients could be infected. In addition, the technique would also be suitable for detecting the presence of toxins in the environment or in food, particularly in liquids such as milk or baby food, or the presence of doping or other illicit drugs.

Support for the research on this novel multiplexed protein sensor was provided by the Graduate School of Excellence 'Materials Science in Mainz' (MAINZ) and the European Research Council (ERC) 'Single Sense' project.

Publication:
Christina Rosman et al.
Multiplexed Plasmon Sensor for Rapid Label-free Analyte Detection
Nano Letters, 21 June 2013
DOI: 10.1021/nl401354f
Further information:
Professor Dr. Carsten Sönnichsen
Institute of Physical Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20639 or +49 6131 39-24313
fax +49 6131 39-26747
e-mail: carsten.soennichsen@uni-mainz.de
http://www.nano-bio-tech.de/
Weitere Informationen:
http://www.uni-mainz.de/presse/16589_ENG_HTML.php - press release ;
http://pubs.acs.org/doi/abs/10.1021/nl401354f - Article in Nano Letters

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: CHEMISTRY DNA DNA strand JGU Letters Nano Physical chemists specific protein

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

Loss of identity in immune cells explained

18.02.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>