Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemically camouflaged wasps

18.12.2015

A special camouflage allows parasitic wasps to raid the nests of host species. The affected hosts seem to have responded to that in the course of evolution as Würzburg biologists report.

Certain wasp species behave similar to cuckoos: They intrude into other nests, destroy the offspring, deposit their own eggs and leave their larvae to feed on the host's food provisions. Actually, the involuntary hosts are supposed to detect the intruders: All insects are covered by a layer of cuticular hydrocarbon molecules that always leave a "scent trail" behind. But the parasitic wasps are camouflaged efficiently: Mimicking their hosts' scent profile, they become invisible.


Three parasitic species of cuckoo wasps at the same time have targeted the food provisions in the nests of mason wasps.

Pictures: Oliver Niehuis, ZFMK Bonn

Professor Thomas Schmitt from the University of Würzburg's Biocenter is studying a particular case of parasitic wasps: The spiny mason wasp (Odynerus spinipes) is native to Central Europe. It is a solitary wasp species that builds its nests in the ground and serves as a host to three species of cuckoo wasps at the same time. That is unusual since the parasitic relationships of cuckoo wasps usually involve exactly one parasite for one host.

Results published with the Royal Society

How can the three-parasite system work without them getting into the way of one another? Schmitt and his Ph.D. student Mareike Wurdack looked into this question and discovered something unexpected in the host wasps' camouflage. The results have been published in the magazine "Proceedings of the Royal Society".

One of the three parasitic cuckoo wasp species (Chrysis viridula) goes its very own way: It waits until the mason wasp has laid its eggs, supplied food provisions and sealed the nest. The offspring will develop independently; the owner of the nest never returns. This means the way is free for the parasitic wasp: It digs up the nest and lays its eggs inside. This strategy does not require any camouflaging and consequently this cuckoo wasp's hydrocarbon profile clearly differs from that of the mason wasp.

Two different types of camouflage deceive the same host

The other two cuckoo wasp species (Chrysis mediata, Pseudospinolia neglecta) take a different approach. Entering the host nest before it is sealed, they and their eggs go undetected, because they have the same "body odour" as the owner of the nest. At this point, the Würzburg biologists discovered something baffling: The two parasites do not have the same body scent, rather they differ significantly.

So the scientists checked the hydrocarbon profiles of the mason wasps and found that they, too, had two "chemotypes": "The hosts produce either the one or the other type and the parasites have specialised accordingly," says Schmitt. This finding was confirmed in all three areas the biologists studied: near Würzburg, at the Kaiserstuhl hills near Freiburg and in the Palatinate.

Theory of the evolution of chemical camouflaging

"Our results back the theory that the similarity of the hydrocarbon profiles of cuckoo wasps and their hosts are caused by chemical camouflaging," says Mareike Wurdack. "We also assume that a second chemotype developed in the mason wasp during evolution with the goal to escape parasitic infestation," Schmitt explains. Too bad for the wasp that another parasite adjusted to this evasive strategy.

Teaming up with Oliver Niehuis from Bonn (Research Museum Koenig / Leibniz Institute for Animal Biodiversity), Thomas Schmitt will investigate whether this evolutionary-biological scenario and the molecular mechanisms for creating the chemotypes are true in the next three years. The German Research Foundation (Deutsche Forschungsgemeinschaft DFG) has recently approved a corresponding application by the two scientists.

Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae): Mareike Wurdack, Sina Herbertz, Daniel Dowling, Johannes Kroiss, Erhard Strohm, Hannes Baur, Oliver Niehuis, and Thomas Schmitt. Proceedings of the Royal Society, 16 December 2015, DOI: 10.1098/rspb.2015.1777

Thomas Schmitt’s website: http://www.zoo3.biozentrum.uni-wuerzburg.de/team/schmitt

Contact

Mareike Wurdack, Prof. Dr. Thomas Schmitt, Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, Phone +49 931 31-84188, thomas.schmitt@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>