Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells of aggressive leukemia hijack normal protein to grow

01.03.2010
Researchers have found that one particularly aggressive type of blood cancer, mixed lineage leukemia (MLL), has an unusual way to keep the molecular motors running. The cancer cells rely on the normal version of an associated protein to stay alive.

MLL happens when a piece of chromosome 11 breaks off at the normal MLL-associated gene. The broken gene attaches itself to another chromosome, resulting in a fusion protein that eventually causes uncontrolled growth of blood cells.

The lab of senior author Xianxin Hua, MD, PhD, an associate professor of Cancer Biology at the University of Pennsylvania School of Medicine, found that this runaway growth triggered by the fusion protein is blocked when the gene for the normal protein is deleted from leukemia cells. This indicates that the normal protein is required for MLL to proliferate. The findings appear in the current issue of Cancer Cell, and are featured on the cover. Hua is also an associate investigator of the Abramson Family Cancer Research Institute.

The chromosomal breakages and reattachments of MLL, called translocations, are common in many aggressive leukemias. Children with mixed lineage leukemia have a poor treatment outlook because they do not respond well to standard therapies for other types of leukemia, and they often suffer from early relapse after chemotherapy.

MLL translocations come in a variety of types, causing the fusion of the normal gene with one of over 60 other genes on other chromosomes known to work in human leukemias. The fusion protein triggers leukemia, partly through modifying chromatin, a DNA-protein complex.

The researchers also discovered that the normal MLL protein cooperates with the fusion proteins via chemical modifications to chromosomes, which regulate what genes should be turned on or off; by increasing survival of leukemia cells; and by maintaining leukemia stem cells.

"This research not only uncovers the crucial role of a normal protein key to the development of MLL, but also how the cancer cells stay alive in the first place," says Hua. The unraveling of the new, yet little-anticipated, molecular player behind MLL points to the normal MLL gene as a potential target for new therapies, partly through repressing leukemia stem cells.

Building on this discovery, Hua's team will further investigate whether mixed lineage leukemia cells are particularly "addicted" to normal MLL protein, a non-oncogene, in their growth and survival and whether normal MLL proteins specifically cooperate with other factors to sustain leukemia stem cells, with the hope of searching for an Achille's heel of this aggressive leukemia.

Gary Koretzky, MD, PhD, professor of Pathology and Laboratory Medicine at Penn, and Patricia Ernst, Ph.D, assistant professor of Genetics, at Dartmouth College also participated in the research. Other co-authors are Austin T. Thiel, Peter Blessington, Danielle Feather, Xinjiang Wu, Jizhou Yan, Hui Zhang, and Zuguo Liu.

The study was funded partly by a National Institutes of Health (NIH) grant, a Leukemia and Lymphoma Society SCOR grant, and an NIH T32 training grant.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #3 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>