Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Researchers: New Function in an Old Acquaintance – Enzyme Shuts Off Senescence

16.03.2015

Cells have two different programs to safeguard them from getting out of control and developing cancer. One of them is senescence (biological aging). It puts cancer cells into a permanent sleep so they no longer divide and grow in an uncontrolled way.

Now the research group led by Professor Walter Birchmeier (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) has discovered that an enzyme known to be active in breast cancer and leukemia blocks this protection program and boosts tumor growth.

They succeeded in blocking this enzyme in mice with breast cancer, thus reactivating senescence and stopping tumor growth (EMBO-Journal, DOI 10.15252/embj.201489004)*.

The enzyme Shp2 belongs to a group of enzymes called tyrosine phosphatases. These enzymes are major cell growth regulators. Shp2, for example, plays an essential role in early embryogenesis and is also known to play a role in cancer.

Some years ago researchers showed that Shp2 is upregulated in 70 percent of invasive breast cancers. These forms of breast cancer are particularly aggressive. Recent studies with human breast cancer cell lines have also shown that Shp2 mediates survival signals in cancer cells.

Reason enough for MDC cancer researcher Professor Birchmeier, who for years has been studying signaling in cancer, to further investigate this enzyme with his research team colleagues Dr. Linxiang Lan and Dr. Jane Holland. Also, current evidence shows that senescence may play an inhibitory role in breast cancer.

The MDC researchers therefore studied mice which carried the breast cancer gene PyMT. This oncogene rapidly initiates breast cancer, which also metastasizes. The researchers noted that the enzyme Shp2 is very active in these mice.

They were able to show that Shp2 initiates a signaling cascade. Within this cascade Shp2 turns on different signaling molecules, but turns off the tumor suppressor genes p27 und p53. As a result, the senescence protection program is also shut off.

The question of interest was whether or not senescence can be turned on again. Is it possible to target Shp2 directly and shut it off? Using a small molecule, researchers of the biotech company Experimental Pharmacology and Oncology (EPO), based on the Berlin-Buch campus as is the MDC, were able to shut down the Shp2 gene in the mice with breast cancer.

In this way they were able to reactivate the senescence program and stop the growth of the breast cancer cells. The small molecule was developed by the Leibniz-Institut für molekulare Pharmakologie (FMP) in Berlin-Buch. However, it is still an experimental drug and has not been licensed for use in human patients.

The next step was to find out which role Shp2 and its target genes play in human patients with breast cancer. Dr. Balázs Györffy of Semmelweiss University in Budapest, Hungary, a longtime collaborator of Professor Birchmeier, looked at the retrospective data of almost 4,000 patients.

After analyzing the data, he and his collaborators in Berlin are convinced that the activity of Shp2 and its target genes can predict the outcome of breast cancer: The less active Shp2 is, the higher the chance for the affected women to stay relapse-free after having undergone a successful breast cancer therapy.

“Our data suggest that senescence induction by inhibiting Shp2 or controlling its targets may be useful in therapeutic approaches to breast cancer,” the researchers conclude. Cancer cells in the senescence mode secrete messenger molecules of the immune system (cytokines), enabling the body’s defense system to identify these sleeping cancer cells and destroy them.

*Shp2 Signaling is Essential to the Suppression of Senescence in PyMT-induced Mammary Gland Cancer in Mice
Linxiang Lan1, Jane D. Holland1, Jingjing Qi1, Stefanie Grosskopf1, Regina Vogel1, Balázs Györffy2,3, Annika Wulf-Goldenberg4, Walter Birchmeier1,*
1 Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) Berlin, Germany
2 MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
3 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
4 Experimental Pharmacology & Oncology (EPO), Berlin, Germany


Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>