Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Researchers: New Function in an Old Acquaintance – Enzyme Shuts Off Senescence

16.03.2015

Cells have two different programs to safeguard them from getting out of control and developing cancer. One of them is senescence (biological aging). It puts cancer cells into a permanent sleep so they no longer divide and grow in an uncontrolled way.

Now the research group led by Professor Walter Birchmeier (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) has discovered that an enzyme known to be active in breast cancer and leukemia blocks this protection program and boosts tumor growth.

They succeeded in blocking this enzyme in mice with breast cancer, thus reactivating senescence and stopping tumor growth (EMBO-Journal, DOI 10.15252/embj.201489004)*.

The enzyme Shp2 belongs to a group of enzymes called tyrosine phosphatases. These enzymes are major cell growth regulators. Shp2, for example, plays an essential role in early embryogenesis and is also known to play a role in cancer.

Some years ago researchers showed that Shp2 is upregulated in 70 percent of invasive breast cancers. These forms of breast cancer are particularly aggressive. Recent studies with human breast cancer cell lines have also shown that Shp2 mediates survival signals in cancer cells.

Reason enough for MDC cancer researcher Professor Birchmeier, who for years has been studying signaling in cancer, to further investigate this enzyme with his research team colleagues Dr. Linxiang Lan and Dr. Jane Holland. Also, current evidence shows that senescence may play an inhibitory role in breast cancer.

The MDC researchers therefore studied mice which carried the breast cancer gene PyMT. This oncogene rapidly initiates breast cancer, which also metastasizes. The researchers noted that the enzyme Shp2 is very active in these mice.

They were able to show that Shp2 initiates a signaling cascade. Within this cascade Shp2 turns on different signaling molecules, but turns off the tumor suppressor genes p27 und p53. As a result, the senescence protection program is also shut off.

The question of interest was whether or not senescence can be turned on again. Is it possible to target Shp2 directly and shut it off? Using a small molecule, researchers of the biotech company Experimental Pharmacology and Oncology (EPO), based on the Berlin-Buch campus as is the MDC, were able to shut down the Shp2 gene in the mice with breast cancer.

In this way they were able to reactivate the senescence program and stop the growth of the breast cancer cells. The small molecule was developed by the Leibniz-Institut für molekulare Pharmakologie (FMP) in Berlin-Buch. However, it is still an experimental drug and has not been licensed for use in human patients.

The next step was to find out which role Shp2 and its target genes play in human patients with breast cancer. Dr. Balázs Györffy of Semmelweiss University in Budapest, Hungary, a longtime collaborator of Professor Birchmeier, looked at the retrospective data of almost 4,000 patients.

After analyzing the data, he and his collaborators in Berlin are convinced that the activity of Shp2 and its target genes can predict the outcome of breast cancer: The less active Shp2 is, the higher the chance for the affected women to stay relapse-free after having undergone a successful breast cancer therapy.

“Our data suggest that senescence induction by inhibiting Shp2 or controlling its targets may be useful in therapeutic approaches to breast cancer,” the researchers conclude. Cancer cells in the senescence mode secrete messenger molecules of the immune system (cytokines), enabling the body’s defense system to identify these sleeping cancer cells and destroy them.

*Shp2 Signaling is Essential to the Suppression of Senescence in PyMT-induced Mammary Gland Cancer in Mice
Linxiang Lan1, Jane D. Holland1, Jingjing Qi1, Stefanie Grosskopf1, Regina Vogel1, Balázs Györffy2,3, Annika Wulf-Goldenberg4, Walter Birchmeier1,*
1 Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) Berlin, Germany
2 MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
3 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
4 Experimental Pharmacology & Oncology (EPO), Berlin, Germany


Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>