Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre Crocodile Fossil Discovered Dispels Notion That These Reptiles are Static and Unchanging

10.12.2010
Head skeleton structures described in exceptional detail down to the pathways of the tiniest nerves and blood vesels

We all know that crocodiles are reptiles with long snouts, conical teeth, strong jaws and long tails. But according to researchers at Stony Brook University in New York, we don’t know what we thought we knew.

Rather, some crocodiles possessed a dazzling array of adaptations that resulted in unique and sometimes bizarre anatomy, including blunt, pug-nosed snouts, pudgy bodies and short tails.

These anatomical adaptations of the incredibly diverse group of reptiles called notosuchian crocodyliforms are brilliantly illuminated in a new Memoir of the Society of Vertebrate Paleontology. This massive, richly illustrated volume, edited by Drs. David W. Krause and Nathan J. Kley of Stony Brook, clearly dispels the notion that crocodiles are static, unchanging “living fossils.”

The volume, which gives an account of fossil crocodyliform anatomy that is unprecedented in its thoroughness, is set for publication on December 8, 2010.

The epitome of crocodyliform anomaly is represented by Simosuchus clarki, which lived in Madagascar at the end of the “Age of Dinosaurs” (about 66 million years ago). First described preliminarily in 2000 from a well-preserved skull and partial skeleton, Simosuchus shattered the crocodyliform mold with its blunt snout, leaf-shaped teeth, and short, tank-like body covered in a suit of bony armor.

“ Simosuchus is easily the most bizarre crocodyliform ever found,” declared Dr. Christopher Brochu, a leading expert on fossil crocodiles from the University of Iowa.

Over the next decade, expeditions to Madagascar recovered more skulls and skeletons, now representing nearly every bone of Simosuchus. A reconstruction of this uncommonly complete fossil reptile and an interpretation of its place in the crocodile evolutionary tree became the subject of the new volume.

“The completeness and preservation of the specimens demanded detailed treatment,” said Krause, Distinguished Service Professor in the Department of Anatomical Sciences at Stony Brook University. “It just seemed unconscionable to not document such fantastic fossil material of this unique animal.”

Brochu, who did not participate in the research, said that “very few crocodilians – even those alive today – have been subjected to this level of analysis. This reference sets a new standard for analyses of extinct crocodyliforms and is going to used for decades.”

A separate chapter of the monograph is devoted to each of the major parts of the animal – skull, backbone, limbs, and armor.

“The skull and lower jaw in particular are preserved almost completely,” said Kley, assistant professor in the Department of Anatomical Sciences at Stony Brook University. “This, combined with high-resolution CT scans of the most exquisitely preserved specimen, has allowed us to describe the structure of the head skeleton – both externally and internally – in exceptional detail, including even the pathways of the tiniest nerves and blood vessels.”

But while it is easy to lose one-self in the details of these incredible fossils, one of the most amazing features is the overall shape of the animal. Two feet long, pudgy, with a blunt snout and the shortest tail of any known crocodyliform, Simosuchus was not equipped to snatch unsuspecting animal prey from the water’s edge as many modern crocodiles do.

“Simosuchus lived on land, and its crouched posture and wide body probably meant it was not very agile or fast,” said Joseph Sertich, a Ph.D. student in the Department of Anatomical Sciences at Stony Brook who participated in the research.

In addition, its short, under-slung jaw and weak, leaf-shaped teeth show that it probably munched on a diet of plants. While the idea of a gentle, vegetarian crocodile is unusual to us today, the new memoir makes it easy to imagine Simosuchus ambling through its semi-arid grassland habitat, pausing to nip at plants and crouching low to hide from predators like the meat-eating dinosaur Majungasaurus.

The paleontologists also found evidence that pointed to the evolutionary origin of Simosuchus. “Interestingly, an analysis of evolutionary relationships suggests Simosuchus’ closest relative lived much earlier, in Egypt,” said Sertich.

Details like these are crucial to deciphering the pattern of the dispersal of life around the globe, an area of scientific study known as biogeography. Whatever its ancestry, Simosuchus has set a surprising new standard for what constitutes a crocodile.

The article appears in the Journal of Vertebrate Paleontology 30(6, Supplement) published by Taylor and Francis.

ABOUT THE SOCIETY OF VERTEBRATE PALEONTOLOGY
Founded in 1940 by 34 paleontologists, the Society now has over 2,000 members representing professionals, students, artists, preparators, and others interested in vertebrate paleontology. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.
The Journal of Vertebrate Paleontology
The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

Citation: D. W. Krause and N. J. Kley (eds.), Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology Memoir 10. Journal of Vertebrate Paleontology 30(6, Supplement).

Journal Web site: Society of Vertebrate Paleontology: http://www.vertpaleo.org

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>