Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosynthesis of widespread pigments from bacteria revealed

11.04.2019

Researchers from Goethe University and TU Munich decode biosynthesis of aryl polyene pigments

Bacteria can protect themselves from the attack of free radicals using specific natural products in their membranes.


Biosynthesis of the yellow aryl polyene protective pigments from simple precursors that are very widespread in bacteria.

Credit: Maximilian Schmalhofer

The biosynthesis of one of the most common protective pigments that could also be of interest for the medical and cosmetic industries has now been uncovered by researchers from Goethe University and TU Munich.

Aryl polyene are yellow pigments produced by bacteria living in widely varying environments such as soil, the human intestines or other ecological niches. Embedded in the membrane of the bacteria, they serve as protection against oxidative stress or reactive oxygen species. The latter can damage the cells once it enters the bacterial cell.

Although it was previously known which proteins were responsible for the formation of aryl polyenes, it was unclear how they produced the yellow pigments. The research group Molecular Biotechnology led by Professor Helge Bode (Goethe University Frankfurt), working in collaboration with the research group led by Assistant Professor Nina Morgner (Faculty of Chemistry at Goethe University) and Professor Michael Groll (Technical University of Munich), was able to reconstitute the biosynthesis of aryl polyenes in the test tube and thus elucidate the function of individual biosynthesis steps.

“Aryl polyenes’ anti-oxidative properties are similar to those of carotenoids, but are produced completely differently,” says Gina Grammbitter, who investigated this system as part of her doctoral work. “Its biosynthesis is very similar to the formation of fatty acids, but also exhibits unexpected differences,” adds Nina Morgner. “Together with Michael Groll’s group, we were able to identify unusual complexes of the proteins involved and determine their structure.”

As the researchers demonstrate in the current issue of the Journal of the American Chemical Society, aryl polyenes are produced via a novel biosynthesis pathway and are presumably located directly in the membrane of the bacteria. However, aryl polyenes are only part of a much larger natural product: “What’s still missing is the formation and structure of this overall structure,” explains Gina Grammbitter, who is currently working on exactly this issue.

Research in this field continues. The next step is to investigate the interaction of the individual enzymes and the role of aryl polyenes, e.g. in the microbiome of humans. Because of their anti-oxidation properties, aryl polyenes may also be of interest to the cosmetic industry.

Publication:Grammbitter GLC, Schmalhofer M, Karimi K, Schöner TA, Tobias NJ, Morgner N, Groll M, Bode HB. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J Am Chem Soc. 2019 Mar 25. doi: 10.1021/jacs.8b10776.

An image may be downloaded here: http://uni-frankfurt.de/77157898

Caption: Biosynthesis of the yellow aryl polyene protective pigments from simple precursors that are very widespread in bacteria.

Information Professor Helge B. Bode, Molecular Biotechnology, Faculty of Biological Sciences, Riedberg Campus, Tel.: +49 69 798-29557, H.Bode@bio.uni-frankfurt.de.


Current news about science, teaching, and society can be found on GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-13035, Fax: +49 (0) 69 798-763 12531, hardy@pvw.uni-frankfurt.de.

Wissenschaftliche Ansprechpartner:

Professor Helge B. Bode, Molecular Biotechnology, Faculty of Biological Sciences, Riedberg Campus, Tel.: +49 69 798-29557, H.Bode@bio.uni-frankfurt.de.

Originalpublikation:

Publication:Grammbitter GLC, Schmalhofer M, Karimi K, Schöner TA, Tobias NJ, Morgner N, Groll M, Bode HB. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J Am Chem Soc. 2019 Mar 25. doi: 10.1021/jacs.8b10776.

Weitere Informationen:

https://aktuelles.uni-frankfurt.de/englisch/researchers-from-goethe-university-a...

Jennifer Hohensteiner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Reproduction: How male flies enforce their interests to the detriment of females
11.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht How much nature is lost due to higher yields?
10.04.2019 | Helmholtz Centre for Environmental Research - UFZ

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

Im Focus: Creating blood vessels on demand

Researchers discover new cell population that can help in regenerative processes

When organs or tissues are damaged, new blood vessels must form as they play a vital role in bringing nutrients and eliminating waste. This is the only way for...

Im Focus: Substantial differences between the tumor-promoting enzymes USP25 and USP28 identified

Researchers from the Rudolf Virchow Center of the University of Würzburg (JMU) have solved the structures of the cancer-promoting enzymes USP25 and USP28 and identified significant differences in their activities. Both enzymes promote the growth of various tumors. The results were published in the journal Molecular Cell and could benefit towards the development of new, low-side-effects anticancer drugs.

The permanent interplay of protein production and degradation is a major driver of cellular metabolism. A key mechanism of this regulation is the labeling of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

Networks make it easier

02.04.2019 | Event News

 
Latest News

New quantum material could warn of neurological disease

11.04.2019 | Medical Engineering

Biosynthesis of widespread pigments from bacteria revealed

11.04.2019 | Life Sciences

Reproduction: How male flies enforce their interests to the detriment of females

11.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>