Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensors: Hormonal attractions

28.03.2011
Ultrasmall silicon wires could detect subtle changes in estrogen receptor-binding DNA sequences that are implicated in breast cancer

Estrogen receptor (ER) proteins play a major role in controlling the transcription of genetic information from DNA to messenger RNA in cells. Understanding how ER proteins interact with specific DNA regulatory sequences may shed new light on important physiological processes in the body, such as cell growth and differentiation, as well as the development and progression of breast cancer. Guo-Jun Zhang at the A*STAR Institute of Microelectronics and co-workers[1] have now developed a detector that uses silicon nanowires (SiNWs) to evaluate these interactions.

The magnitude of the transcriptional activity that arises from the ER–DNA binding varies from one gene to another. Some genes are highly affected while others are only marginally changed. Zhang and his co-workers therefore investigated how slight variations in nucleotide composition affect the binding affinity between ER and DNA. By combining this new information with existing experimental data on gene expression, the researchers could predict transcriptional outcome following ER–DNA binding and gain new insight into ER signaling.

Most imaging techniques developed for the study of interactions between ER proteins and DNA targets are time-consuming and require the use of fluorescent labels. A number of label-free methods exist, but they lack the sensitivity needed to distinguish subtle changes in ER–DNA binding. The new system created by Zhang’s team is both label-free and highly sensitive.

The researchers prepared their ER-based sensor by modifying a nanostructured biosensing platform previously used to detect cardiac biomarkers and the dengue virus. They generated SiNW arrays on a silica substrate (pictured) through optical lithography and covered the silicon surfaces with functional organosilane and organic molecules, which allowed them to immobilize the ER proteins on the nanowires. Next, a well-shaped sample holder, constructed of insulating material, was pasted around the SiNW area.

After exposing the ER-functionalized nanowires with the target DNA, the team measured the change in resistance induced by ER–DNA complex formation to assess the binding affinity. Upon binding to ERs, DNA strands increased the overall increase in resistance of the SiNWs by adding negative charges.

The researchers discovered that the sensor could detect ultralow levels of ER-bound DNA and discriminate ER-specific from mutant DNA sequences. Moreover, the DNA easily detached from the ER-functionalized nanowires upon contact with a detergent, enabling the regeneration of the sensor.

“The SiNW array biosensor platform is now helping us in the multiplexed characterization of protein–DNA interactions,” says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, G.-J. et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26, 365–370 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6294
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>