Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle of the Blood Clots

11.10.2013
Tailored glycopolymers as anticoagulant heparin mimetics

One of the risks of any large operation is the occurrence of blood clots. To prevent this, patients are routinely given the anticoagulant heparin or related drugs. American scientists have now introduced a new approach to the production of synthetic heparin mimetics with better activity profiles.



Heparin has been used as an anticoagulant since 1935 to both treat and prevent the deep vein thrombosis that can result from operations, blood transfusions, or dialysis. Heparin is a substance produced by the body and consists of long chains of sugar (saccharide) molecules. The sugar building blocks contain a large number of sulfate groups.

Because heparin is obtained from animal tissues, its use does pose some problems. Contamination may lead to health risks. Furthermore, batches of the drug are often not homogeneous so the effectiveness of a given dose must be calculated case by case. In about 3 % of patients, long-term treatment with heparin leads to a dangerous autoimmune disease.

Low-molecular-weight drugs such as Arixtra, which contains only five sugar groups, have been developed as an alternative. Their disadvantage is the very complex and expensive process used to make them.

Linda C. Hsieh-Wilson and her team at the California Institute of Technology in Pasadena have now uncovered an interesting new angle: synthetic glycopolymers, long chains of molecules that have sugar molecules as side groups. The researchers chose to use two sugars typically found in heparin as side groups.

One of these sugars was equipped with an additional sulfate group. The synthesis of such glycopolymers is much simpler than the synthesis of natural polysaccharides, but it is still a complex undertaking, and it is made more difficult in this case because of the need to attach sulfate groups in a controlled fashion. The team was able to use a ring-opening metathesis polymerization reaction (ROMP) to make polymer chains of varying length with a maximum of 45 units.

The longer molecular chains demonstrate stronger activity than anticoagulants currently in clinical use. The additional sulfate group is critical to this effectiveness. Interestingly, systematic changes to the length of the chain and pattern of sulfate groups allow for fine-tuning of the anticoagulant effect. This makes it possible to make drugs with different activities from those previously in clinical use. For example, the glycopolymer containing 45 building blocks targeted the two major branches of the blood coagulation cascade to a different extent than both the small molecule and heparin polysaccharide drugs.

About the Author
Dr. Linda Hsieh-Wilson is a Professor of Chemistry at the California Institute of Technology and an Investigator at the Howard Hughes Medical Institute. Her research focuses on the application of organic chemistry to probe the roles of carbohydrates and protein glysosylation in neurobiology and cancer, and has been recognized by multiple awards.
Author: Linda C. Hsieh-Wilson, California Institute of Technology, Pasadena (USA), http://chemistry.caltech.edu/~fucose/contact.html
Title: Tailored Glycopolymers as Anticoagulant Heparin Mimetics
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201306968

Linda C. Hsieh-Wilson | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>