Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arginine restores T-cell ability to target cancer

23.11.2011
In many cases, tumors suppress a patient’s immune system in a way that keeps the cancer safe from immune system attack. This is particularly true for patients with glioblastoma, a primary brain tumor that carries a prognosis of only 12-15 months survival after diagnosis.

A study at the University of Colorado Cancer Center, recently published as a featured article in the journal Clinical Cancer Research, shows that treatment with the over-the-counter amino acid arginine may reactivate cancer-fighting T-cells in patients with glioblastoma, thus potentially allowing the immune system to help cleanse the body of cancer.

T-cells are the primary agent responsible for anti-tumor immune responses.

“If you take T-cells from patients with glioblastoma and stimulate them in the lab, they aren’t effective (in killing cancer cells),” says lead author Allen Waziri, MD, investigator at the CU Cancer Center, assistant professor of neurosurgery at the University of Colorado School of Medicine. “But when we add back arginine, we restore T-cell function.”

In part, function is restored through the activity of neutrophils – an ancient and nonspecific type of white blood cell that kills invaders. After responding to inflammation, neutrophils stop the ongoing immune response. It’s as if once they arrive, they consider the infection treated and so suppress any response that exceeds what is needed – a response that if left unchecked would lead to the destruction of healthy tissues.

Neutrophils stop the immune response by secreting an enzyme called arginase. And after they secrete arginase, commonly they die and are excreted by the body. However, in many glioblastoma patients, these neutrophils persist and continue to produce immune-suppressing arginase.

“Persistence of activated neutrophils and increased arginase in the circulation of glioblastoma patients is a fascinating phenomenon, particularly considering that under normal conditions, neutrophils are expected to have an average lifespan of just several hours after activation,” he says.

Waziri’s group has hypothesized that persistent arginase production from neutrophils suppresses the immune system and keeps cancers from becoming immune targets.

“From one perspective, it appears that glioblastoma is taking advantage of a simple, evolutionarily-ancient method for controlling out-of-control immunity to avoid the specific anti-tumor immune response,” Waziri says.

However, there is a step between increased arginase and immune system suppression, and this is where Waziri and colleagues intervene – arginase, in fact, deletes the common amino acid arginine.

T-cells are critically dependent on arginine for activation and function. Therefore, it’s not the increase in arginase per se that is responsible for blunting T-cell activity, but rather the resulting lack of arginine that suppresses the immune systems of glioblastoma patients, Waziri’s group found.

Waziri and colleagues at the CU Cancer Center recently started a phase 0 clinical trial in newly diagnosed glioblastoma patients to explore whether a week-long, high-dose course of arginine before cancer surgery can allow an immune system that previously missed cancer cells to recognize and attack them. Waziri and his team will look at the effect of arginine on patients’ immune systems as measured by T-cell function, immunological profile, and T-cell infiltration into resected tumor tissue.

“Our overall goal is to improve the efficacy of immunotherapy for glioblastoma,” he says. “It’s likely that this will require a two-stage approach, including stimulation of the immune system with something like a tumor vaccine while simultaneously targeting the suppressive effects of tumors on the immune system.”

With positive results from this initial trial, Waziri hopes to further explore whether longer courses of arginine could help reduce the recurrence of glioblastoma and potentially offer a new strategy for patients with this otherwise incurable disease.

Waziri credits seed grants he has received from the AMC Cancer Fund (a fundraising arm of the CU Cancer Center), he Cancer League of Colorado, and an American Cancer Society Institutional Research Grant for contributing to the preclinical work that has led to this exciting clinical trial.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer T-cell amino acid cancer cells cell function immune response immune system

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>