Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activation against Malaria

10.08.2010
Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins

In combination therapies against malaria, artemisinins are currently the most effective drugs used. Although the subject of intense research for many years, artemisinin's molecular mechanism of action remains a topic of debate.

A much clearer picture of how this compound class works would provide crucial information in the effort to create more effective antimalarial drugs that are less susceptible to resistance. A conventional model suggests that artemisinin elicits its effects through the formation of heme-derived FeII and C-centered radicals. However, a research project led by Richard K. Haynes and Diego Monti has provided strong evidence to counter this model, and their results are reported in the journal ChemMedChem.

"Our research reveals completely new chemistry that includes the formation of unexpected products and which is coherent with relevant enzyme assays," says Haynes. "It directs the science away from the FeII activation theory that is universally held to underpin the antimalarial action of artemisinins. The lead into this work was the use of methylene blue (MB) as an antimalarial drug and the synergistic effect it displays with artemisinins. This is compatible with the idea that artemisinins, like MB, are redox-active molecules that interfere with redox enzymes important for the malaria parasite. MB is converted by reduced flavin cofactors into leucomethylene blue, which initiates a redox cycle involving molecular oxygen. We therefore examined the behavior of such reduced cofactors and model compounds with artemisinins. Importantly, we were able to generate the reduced cofactors catalytically in neutral aqueous (biologically relevant) buffer in the presence of artemisinin and biological reductants, the latter of which alone do not affect the artemisinins. In this sense, our work differs from virtually every other chemical/mechanistic study that has been carried out to date. We report that artemisinins are able to undergo both one-electron transfer and two-electron reduction, and both sets of reactions must have biological consequences."

As for the next step in this project, Haynes and Monti indicate that "Whilst we have not yet tried to pinpoint the flavin cofactor of any particular intra-parasitic enzyme that may be targeted, it is apparent that several flavoenzymes are susceptible to artemisinins. Detailed biochemical and kinetic investigations are being conducted in follow-up studies."

Author: Richard K. Haynes, The Hong Kong University of Science and Technology (China), http://www-chem.ust.hk/Faculty%20staff/Haynes/content.htm

Title: Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of Action

ChemMedChem 2010, 5, No. 8, 1282–1299, Permalink to the article: http://dx.doi.org/10.1002/cmdc.201000225

Richard K. Haynes | Wiley-VCH
Further information:
http://www.chemmedchem.org
http://www-chem.ust.hk/Faculty%20staff/Haynes/content.htm

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>