Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A RUDN chemist created nanoreactors to synthesize organic substances under visible light

10.10.2018

A RUDN chemist developed a new type of photocatalysts -- nanostructures from titanium dioxide

A RUDN chemist developed a new type of photocatalysts - nanostructures from titanium dioxide. Hollow nanocubes with ultra-thin walls act like nanoreactors and provide for 28 fold more effective organic reactions at room temperature under the influence of visible light. The article about the development was published in Applied Catalysis B: Environmental.


BHC-TiO2 nanoarchitectures exhibited excelling photocatalytic performance under visible light in the preparation of benzimidazole derivatives.

Credit: Allen Dressen

Traditional methods of manufacturing pharmaceuticals, fertilizers, pesticides, food additives, and other useful products from organic substances require high pressure and temperature levels. One of the ways to make the chemical industry less energy-consuming is photocatalysis. Photocatalysts are able to speed up organic reactions under the influence of light under ambient conditions, that is without increasing temperature or pressure.

Titanium dioxide is considered a prospective catalyst. However, its catalytic activity is activated only in UV light which comprises only 5% of sunlight. When shaped as hollow nanostructures, titanium dioxide becomes more active as a catalyst. Rafael Luque, the Director of the Center for Molecular Design and Synthesis of Innovative Compounds for Medicine together with colleagues from Iran described a new type of such structures with high photocatalytic activity: black hollow nanocubes made of titanium dioxide (BHC-TiO2).

The development of the new nanostructures took almost 2 years. The sciences created a comparatively easy approach to the design of nanostructures. The procedure consists of 4 main steps. First, the chemists prepare nanocubes made of hematite and cover them with titanium dioxide.

On the next step the insides of the cubes are washed out using the solution of hydrochloric acid leaving only the thin titanium dioxide shell. The final stage is baking at 550° ? in a hydrogen-argon atmosphere. After that the samples turn into black hollow nanocubes. The whole process takes around 2-3 days.

"The main advantages of our structures are that they are easy to create, durable, and can be used for different purposes. BHC-TiO2 can be used as a photocatalyst, for water purification to accelerate the decomposition of pollutants as well as for biomass conversion Currently we are studying the application of photocatalysts in the production of organic substances," said Rafael Luque, the Director of the Center for Molecular Design and Synthesis of Innovative Compounds for Medicine.

The researchers from RUDN checked the catalytic activity of several types of nanocubes - one-piece ones made of titanium dioxide, hollow ones, and baked black hollow BHC-TiO2 ones - in an experiment involving benzimidazole synthesis. The derivatives of this substance are in high demand in the pharmaceutical industry. Some samples were exposed to visible light from a regular halogenic lamp, and some - to UV radiation.

BHC-TiO2 particles showed high catalytic activity under both types of exposure. 86% of the initial substance was processed under the influence of visible light, which is 28 times more than in the experiment with one-piece (non hollow) titanium dioxide cubes. Chemists believe that this activity of the new structures is due to their hollowness, large surface area, and porous ultra-thin walls. All these properties make nanocubes work as nanoreactors, i.e. reflect and scatter light and easily absorb organic substances, creating a medium for effective reactions inside the cubes. Ti3+ ions formed on the surface of nanocubes in the course of baking also play an important role. RUDN scientists believe they facilitate electron transfer making the whole structure absorb visible light (and not just the UV light like pure titanium dioxide).

The experiments proved a high durability of the nanoreactors: even after the sixth use, the structures kept their form and almost all Ti3+ ions on their surface. Therefore, BHC-TiO2 can be used to carry out at least 7 organic reactions without any loss in their catalytic activity.

###

The research was carried out with the support of the 5-100 program with the help of scientists from the University of Tehran (Iran) and the University of Cordoba (Spain).

Media Contact

Valeriya V. Antonova
antonova_vv@rudn.university

http://eng.rudn.ru/ 

Valeriya V. Antonova | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.apcatb.2018.07.020

More articles from Life Sciences:

nachricht Dynamics of individual proteins
09.10.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dynamik einzelner Proteine
09.10.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

Im Focus: Researchers discover how fatal biofilms form

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come a lot closer to understanding how these biofilms develop, and potentially how to stop them.

Biofilms form when bacterial cells gather and develop structures that bond them in a gooey substance. This glue can protect the cells from the outside world...

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

Im Focus: Breakthrough in quantum physics: Reaction of quantum fluid to photoexcitation of dissolved particles

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

New NIST method measures 3D polymer processing precisely

10.10.2018 | Materials Sciences

A RUDN chemist created nanoreactors to synthesize organic substances under visible light

10.10.2018 | Life Sciences

A new path to solving a longstanding fusion challenge

10.10.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>