Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Resource for Advanced Biofuels Research

24.06.2014

Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls.

The idea behind what is being called “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.


The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, features GT clones of rice (shown here) and Arabidopsis plants. (Photo by Roy Kaltschmidt)

Glycosyltransferases (GTs) are enzymes that catalyze the connection of simple monosaccharide sugars into the complex polysaccharide sugars that are essential to a wide range of plant cell structures and processes. While it is known that plants have evolved large families of GTs, the chemical nature of these enzymes is such that the specific functions of most GTs remain largely unknown. This is a major drawback for bioenergy research where the goal is to modify plant biomass for maximum fuel yields.

To address this problem, especially as it pertains to cell wall biosynthesis, a large team of JBEI researchers, led by Joshua Heazlewood, director of JBEI’s Plant Systems Biology program, has cloned and verified a clone library consisting of 403 Arabidopsis GTs and 96 rice GTs. In plant biology, Arabidopsis is the reference plant for species like poplar, and rice the reference plant for grasses.

“Using the unique infrastructure and resources at JBEI, we have provided a collection of high quality GT clones, all of which have been verified by sequencing and are available in easy to use cassettes,” Heazelwood says. “We’re making this entire collection available to the plant research community and expect it to drive our basic understanding of GTs and enable the manipulation of cell walls.”

In addition to the clones for Arabidopsis and rice GTs, Heazlewood and his collaborators at JBEI also created a set of highly efficient particle bombardment plasmids – pBullets – which are plasmids shot into a cell to mark the location of targeted proteins. The JBEI pBullets are constructed with markers for the plant endomembrane system, the collection of membranes that separates a cell’s functional and structural compartments.

“Our pBullet vector series is custom designed for efficient bombardment,” Heazlewood says. “Researchers generally use large unwieldy plasmids that perform badly when it comes to localizing proteins.”

While the 403 Arabidopsis clones represent approximately 88-percent of the defined Arabidopsis GTs, the 96 rice clones represent only 15-percent of the defined rice GTs. JBEI researchers are now working to expand this. Both the JBEI GT Collection and pBullet vector series are available to the research community through various outlets. For more information visit the Website at http://gt.jbei.org/

Heazlewood and his collaborators have published a paper on the JBEI GT Collection in The Plant Journal. The paper is titled “The Plant Glycosyltransferase Clone Collection for Functional Genomics.” Co-authors were Jeemeng Lao, Ai Oikawa, Jennifer Bromley, Peter McInerney, Anongpat Suttangkakul, Andreia Smith-Moritz, Hector Plahar, Tsan-Yu Chiu, Susana González Fernández-Niño, Berit Ebert, Fan Yang, Katy Christiansen, Sara Hansen, Solomon Stonebloom, Paul  Adams, Pamela Ronald, Nathan Hillson, Masood Hadi, Miguel Vega-Sánchez, Dominique Loqué and Henrik Scheller.

This research was funded by the U.S. Department of Energy’s Office of Science.

Additional Information For more about the Joint BioEnergy Institute go here

Lynn Yarris | Eurek Alert!
Further information:
https://newscenter.lbl.gov/2014/06/23/the-jbei-gt-collection/

Further reports about: Arabidopsis Biofuels Biology Clone Plant fuels polysaccharide proteins species structures vector

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>