Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new milestone in laboratory grown human brain tissue

26.07.2018

Researchers generate missing cell type in brain 'organoids'

A cutting-edge laboratory technique that turns human stem cells into brain-like tissue now recapitulates human brain development more accurately than ever, according to a new study from Case Western Reserve University School of Medicine. The study, published in Nature Methods, demonstrates how to grow brain "organoids"--self-organizing mini spheres that now contain all the major cell types found in the human cerebral cortex--in laboratory dishes.


An image of oligortical spheroids in wells.

Credit: Case Western Reserve School of Medicine

Since its debut, so-called organoid technology has revolutionized researchers' ability to generate and study human tissue in the laboratory. But when it comes to the brain, the models were not entirely complete. This new study provides a missing link.

"We have taken the organoid system and added the third major cell type in the central nervous system--oligodendrocytes--and now have a more accurate representation of cellular interactions that occur during human brain development," said Paul Tesar, PhD, the Dr. Donald and Ruth Weber Goodman Professor of Innovative Therapeutics and associate professor of genetics and genome sciences at Case Western Reserve University School of Medicine.

Oligodendrocytes are critical for a healthy brain. They make myelin, a fatty substance that wraps and supports nerve cell connections, much like insulation around an electric cord. Without myelin, nerve cells cannot communicate effectively and can deteriorate. Many neurological diseases result from myelin defects, including multiple sclerosis and rare pediatric genetic disorders.

"This is a powerful platform to understand human development and neurological disease," said Tesar. "Using stem cell technology we can generate nearly unlimited quantities of human brain-like tissue in the lab. Our method creates a 'mini-cortex,' containing neurons, astrocytes, and now oligodendrocytes producing myelin. This is a major step toward unlocking stages of human brain development that previously were inaccessible."

Tesar and colleagues also demonstrated how their improved organoid system can be used to test myelin-enhancing medications. "These organoids provide a way to predict the safety and efficacy of new myelin therapeutics on human brain-like tissue in the laboratory prior to clinical testing in humans," said Mayur Madhavan, PhD, co-first author on the study. The team treated organoids with drugs previously identified to enhance myelin production in mice. For the first time, the researchers used the model to test drugs that enhance the generation of human oligodendrocytes and myelin.

The research team also generated organoids from patients with Pelizaeus-Merzbacher disease, a rare but fatal genetic myelin disorder. "Pelizaeus-Merzbacher disease has been a complicated disorder to study due to the many different mutations that can cause it and the inaccessibility of patient brain tissue," said Zachary Nevin, PhD, co-first author on the study, "but these new organoids allow us to directly study brain-like tissue from many patients simultaneously and test potential therapies." Organoids generated from patients with three different Pelizaeus-Merzbacher disease mutations each demonstrated unique characteristics that could be targeted for drug treatment. The findings validate the set-up as a versatile platform to observe and dissect human myelin disease and test individualized therapeutics.

"Our method enables generation of human brain tissue in the laboratory from any patient," said Tesar. "More broadly, it can accurately recapitulate how the human nervous system is built and identify what goes wrong in certain neurological conditions."

###

Joining the Tesar laboratory in the study were Robert H. Miller, PhD, and colleagues from the George Washington University School of Medicine and Health Sciences and Valentina Fossati, PhD, and colleagues from The New York Stem Cell Foundation Research Institute.

Madhavan, Nevin, et. al. "Induction of myelinating oligodendrocytes in human cortical spheroids." Nature Methods.

This research was supported by grants from the National Institutes of Health, Pelizaeus-Merzbacher Disease Foundation, New York Stem Cell Foundation, Connor B. Judge Foundation, and National Stem Cell Foundation. Philanthropic support was generously provided by the Peterson, Fakhouri, Long, Goodman, Geller, Galbut/Heil, and Weidenthal families.

For more information about the Tesar laboratory, please visit: tesarlab.case.edu

For more information about Case Western Reserve University School of Medicine, please visit: case.edu/medicine.

Media Contact

Ansley Gogol
ansley.gogol@case.edu
678-313-6525

 @cwru

http://www.case.edu 

Ansley Gogol | EurekAlert!
Further information:
http://casemed.case.edu/cwrumed360/news-releases/?news_category=8
http://dx.doi.org/10.1038/s41592-018-0081-4

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>