Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of vaccine based on spider silk

13.06.2018

By successfully encapsulating a vaccine into a spider silk microparticle, Swiss and German researchers have discovered a novel technique that will help fight cancer and certain infectious diseases

To fight cancer, researchers increasingly use vaccines that stimulate the immune system to identify and destroy tumour cells. However, the desired immune response is is not always guaranteed. In order to strengthen the efficacy of vaccines on the immune system - and in particular on T lymphocytes, specialized in the detection of cancer cells - researchers from the universities of Geneva (UNIGE), Freiburg (UNIFR), Munich, and Bayreuth, in collaboration with the German company AMSilk, have developed spider silk microcapsules capable of delivering the vaccine directly to the heart of immune cells. This process, published in the journal Biomaterials, could also be applied to preventive vaccines to protect against infectious diseases, and constitutes an important step towards vaccines that are stable, easy to use, and resistant to the most extreme storage conditions.


Immune cells that ingested spider silk nanoparticles (in green). The endosomes - the part of the cell in which the nanoparticles release the vaccine - appear in blue.

Credit: © Laboratoire Bourquin - UNIGE

Our immune system is largely based on two types of cells: B lymphocytes, which produce the antibodies needed to defend against various infections, and T lymphocytes. In the case of cancer and certain infectious diseases such as tuberculosis, T lymphocytes need to be stimulated. However, their activation mechanism is more complex than that of B lymphocytes: to trigger a response, it is necessary to use a peptide, a small piece of protein which, if injected alone, is rapidly degraded by the body even before reaching its target.

"To develop immunotherapeutic drugs effective against cancer, it is essential to generate a significant response of T lymphocytes,» says Professor Carole Bourquin, a specialist in antitumor immunotherapies at the faculties of medicine and science of the UNIGE, who directed this work. "As the current vaccines have only limited action on T-cells, it is crucial to develop other vaccination procedures to overcome this issue."

A virtually indestructible capsule

Scientists used synthetic spider silk biopolymers--a lightweight, biocompatible, non-toxic material that is highly resistant to degradation from light and heat. "We recreated this special silk in the lab to insert a peptide with vaccine properties,» explains Thomas Scheibel, a world specialist of spider silk from the University of Bayreuth who participated in the study. "The resulting protein chains are then salted out to form injectable microparticles."

Silk microparticles form a transport capsule that protects the vaccine peptide from rapid degradation in the body, and delivers the peptide to the center of the lymph node cells, thereby considerably increasing T lymphocyte immune responses. "Our study has proved the validity of our technique", reveals Carole Bourquin. "We have demonstrated the effectiveness of a new vaccination strategy that is extremely stable, easy to manufacture and easily customizable."

Towards a new vaccine model

The synthetic silk biopolymer particles demonstrate a high resistance to heat, withstanding over 100°C for several hours without damage. In theory, this process would make it possible to develop vaccines that do not require adjuvants and cold chains. An undeniable advantage, especially in developing countries where one of the great difficulties is the preservation of vaccines. One of the limitations of this process, however, is the size of the microparticles: while the concept is in principle applicable to any peptide, which are all small enough to be incorporated into silk proteins, further research is needed to see if it is also possible to incorporate the larger antigens used in standard vaccines, especially against viral diseases.

When science imitates nature

"More and more, scientists are trying to imitate nature in what it does best", adds Scheibel. "This approach even has a name: bioinspiration, which is exactly what we have done here." The properties of spider silk make it a particularly interesting product: biocompatible, solid, thin, biodegradable, resistant to extreme conditions and even antibacterial, one can imagine multiple applications, including wound dressings or sutures.

Media Contact

Carole Bourquin
Carole.Bourquin@unige.ch
41-223-790-701

 @UNIGEnews

http://www.unige.ch 

Carole Bourquin | EurekAlert!

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>