Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

7 new luminescent mushroom species discovered

06.10.2009
Seven new glow-in-the-dark mushroom species have been discovered, increasing the number of known luminescent fungi species from 64 to 71.

Reported today in the journal Mycologia, the new finds include two new species named after movements in Mozart's Requiem.


A new luminescent fungus, Mycena silvaelucens, discovered by San Francisco State University Professor Dennis Desjardin and former SF State graduate student Brian Perry has been reported in the journal Mycologia. The species was collected in the grounds of an Orangutan Rehabilitation Center in Borneo, Malaysia and was found on the bark of a standing tree. The mushrooms are tiny with each cap measuring less than 18 millimeters in diameter. Credit: Brian Perry, University of Hawaii

The discoveries also shed light on the evolution of luminescence, adding to the number of known lineages in the fungi 'family tree' where luminescence has been reported.

San Francisco State University Biology Professor Dennis Desjardin and colleagues discovered the fungi in Belize, Brazil, Dominican Republic, Jamaica, Japan, Malaysia and Puerto Rico. The discoveries include four species new to science and three new reports of luminescence in known species.

Three quarters of glowing mushrooms, including the species described in the study, belong to the Mycena genus, a group of mushrooms that feed off and decompose organic matter as a source of nutrients to sustain their growth.

"What interests us is that within Mycena, the luminescent species come from 16 different lineages, which suggests that luminescence evolved at a single point and some species later lost the ability to glow," said Desjardin, lead author of the study. He believes that some fungi glow in order to attract nocturnal animals that aid in the dispersal of the mushroom's spores which are similar to seeds and are capable of growing into new organisms.

"It's pretty unusual to find this many luminescent species, typically only two to five percent of the species we collect in the field glow," Desjardin said. "I'm certain there are more out there."

The newly discovered fungi glow constantly, emitting a bright, yellowish-green light, and are tiny, with caps smaller than one centimeter across.

Desjardin has named two of the new species Mycena luxaeterna (eternal light) and Mycena luxperpetua (perpetual light), names inspired by Mozart's Requiem and the fact that these mushrooms glow 24 hours a day. To date, Desjardin has discovered more than 200 new fungi species and together with these latest findings, has discovered nearly a quarter of all known luminescent fungi.

"Luminescent Mycena: new and noteworthy species" was published online in the journal Mycologia on Oct. 5 and will appear in the March/April 2010 print issue. Co-authors include Brian A. Perry, former graduate student at San Francisco State University and currently of the University of Hawaii, D. Jean Lodge of the U.S. Forest Service, Cassius V. Stevani of the University of Sao Paulo, Brazil and Eiji Nagasawa of the Tottori Mycological Institute, Japan.

This research was supported by the National Science Foundation and the National Geographic Society.

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>