Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Cell Transplantation studies impact dental stem cell research for therapeutic purposes

09.05.2012
Two studies appearing in a recent issue of Cell Transplantation (20:11-12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/, evaluate stem cells derived from dental tissues for characteristics that may make them therapeutically useful and appropriate for transplantation purposes.

Induced pluripotent stem cells from immature dental pulp stem cells

A Brazilian and American team of researchers used human immature dental pulp stem cells (IDPSCs) as an alternative source for creating induced pluripotent stem cells (iPSCs), stem cells that can be derived from several kinds of adult tissues. According to the study authors, production of iPSCs "opens new opportunities for increased understanding of human genetic diseases and embryogenesis" and will likely have a "great impact on future drug screening and toxicology tests."

The authors note, however, that the reprogramming methodology for making iPSCs is relatively new and "needs refining" in terms of technique, efficiency and cell type choice.

The researchers report that they easily, and in a short time frame, programmed human immature dental pulp stem cells into iPSCs with the hallmarks of pluripotent stem cells.

"Human IDPSCs can be easily derived from dental pulp extracted from adult or 'baby teeth' during routine dental visits," said study lead author Dr. Patricia C.B. Beltrao-Braga of the highly ranked National Institute of Science and Technology in Stem and Cell Therapy in Ribeirao Preto, Brazil. "hIDPSCs are immunologically privileged and can be used in the absence of any immune suppression protocol and have valuable cell therapy applications, including reconstruction of large cranial defects."
Contact: Dr. Patricia C.B. Beltrao-Braga, National Institute of Science and Technology in Stem Cell and Cell Therapy, 2051 Tenente Catao Roxo St. Ribeirao Preto, Brazil.
Tel. 55 (11) 3091-7690
Email patriciacbbbraga@usp.br
Citation: Beltrão-Braga, P. C. B.; Pignatari, G. C.; Maiorka, P. C.; Oliveira, N. A. J.; Lizier, N. F.; Wenceslau, C. V.; Miglino, M. A.; Muotri, A. R.; Kerkis, I.

Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 20(11-12):1707-1719;2011.

Human dental cells analyzed for telomere length, telomerase activity

A research team from the Republic of Korea has isolated a population of stem cells derived from dental tissues of third molars and found that human dental papilla stem cells (DPaSCs; dental papilla develops into dentin and dental pulp) have biological features similar to bone marrow-derived mesenchymal stem cells (MSCs) in terms of telomere length, telomerase activity and reverse transcriptase (Rtase) activity.
MSCs, one of the most studied and clinically important populations of adult stem cells, do have shortcomings associated with their isolation and expansion from bone marrow, said study lead author Dr. Gyu-Jin Rho of the College of Veterinary Medicine, Gyeongsang National University, Republic of Korea.

"The role of telomere and telomerase are critical biological features of normal tissue stem and progenitor cells," said Dr. Rho. "Telomeres are a specialized region of repetitive DNA, and telomere shortening is related to cellular life span. Lack of telomerase indicates cellular aging. We compared the telomere length and telomerase activity in DPaSCs with those in MSCs and found that DPaSCs possessed ideal characteristics on telomere length, telomerase activity and reverse transcriptase activity, making DPaSCs suitable alternative candidates for regenerative medicine."

The researchers concluded that DPaSCs could provide a source of stem cells for tooth regeneration and repair as well as a wide range of regenerative medicine applications in humans.

"These two studies highlight the potential value of two populations of stem cells that can be derived from the immature dental pulp and papilla of teeth" said Dr. Shinn-Zong Lin, professor of Neurosurgery and superintendent at the China Medical University Hospital, Beigang, Taiwan. "Their MSC-like abilities, ease of transformation to induced pluripotent stem cells, and ease of availability make them a potentially valuable cell therapy".

Contact: Dr. Gyu-Jin Rho, DVM, PhD, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju, GN, Republic of Korea 660-701.
Tel. (+82) 55-751-5824
Fax. (+82) 55-751-5803
Email jinrho@gnu.ac.kr
Citation: Jeon, B. G.; Kang, E. J.; Mohana Kumar, B.; Maeng, G. H.; Ock, S. A.; Kwack, D. O.; Park, B. W.; Rho, G. J. Comparative Analysis of Telomere Length, Telomerase and Reverse Transcriptase Activity in Human Dental Stem Cells. Cell Transplant. 20(11-12):1693-1705; 2011.

The Coeditor-in-chief's for Cell Transplantation are at the Center for Neuropsychiatry, China Medical University Hospital, Beigang, Taiwan, and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or Camillo Ricordi, MD at ricordi@miami.edu or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>