Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings of Novel Nanoproperties in Selenium Produced By Bacteria Open New Area of Exploration

11.02.2004


Findings Could Lead to Faster Electronic Devices

Working at the nexus of biology and nanotechnology, a researcher and an alumnus from Rensselaer Polytechnic Institute have released findings that could lead to the tailoring of bacterial processes for a host of smaller, faster semiconductors and other electronic devices.

Pulickel Ajayan, professor of materials science and engineering at Rensselaer, and geobiologist Ronald Oremland reported that three different kinds of common bacteria “grow” the element selenium in the form of uniform nanospheres. The nanoscopic balls exhibit vastly different properties than selenium that is found as a trace mineral in topsoil.



Selenium is used in photovoltaic and photoconductive technologies. It is incorporated in many electronic and technical applications, such as semiconductors, photocopiers, and photocells.

The findings of Ajayan and Oremland were published in the journal Applied and Environmental Microbiology (an American Society of Microbiology publication) in January. A summary of the research also was featured the same month in the “Editor’s Choice” section of Science magazine.

Oremland, a senior scientist at the U.S. Geological Survey in Menlo Park, Calif., and a 1968 Rensselaer biology graduate, has been studying anaerobic bacteria that respire, or “breathe,” soluble salts, or “oxyanions,” of toxic elements, such as selenium and arsenic. He recently discovered that some of these microbes form distinctive selenium nanoscopic balls, each of which measure 300 nanometers in diameter on the outside of their cell envelopes.

Knowing little about what kinds of properties selenium exhibits on the nanoscale level, Oremland turned to his alma mater to enlist the help of Ajayan, an internationally known nanomaterials expert.

“I was interested in finding out whether this type of selenium would be useful. As a biologist, I am not familiar with the various electrical, optical, and other properties of nanomaterials,” said Oremland, the paper’s lead author.

Ajayan and Seamus Curran, a postdoctoral fellow working at the Nanoscale Science and Engineering Center at Rensselaer at the time, found that the nanospheres exhibited enhanced optical and semiconducting properties. They also discovered that the nanospheres grown on each of the three bacteria studied were different from each other and fundamentally different from amorphous selenium particles formed by chemical means.

“Surprisingly, we found different bacteria produce spheres with different arrangements of the selenium atoms and hence different optical properties,” says Ajayan. “Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.”

The research could lead to the production of nanospheres, nanowires, nanorods, and other nanostructures with precise atomic arrangements for smaller, faster semiconductors and other electronic devices.

“This is an excellent example of how Rensselaer researchers are crossing over disciplines in unique collaborations that are opening up new avenues in research and discovery,” said Rensselaer Provost Bud Peterson.

Other collaborators include researchers from University of Guelph in Canada, the Naval Surface Warfare Center in Virginia, and New Mexico State University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | RPI
Further information:
http://www.rpi.edu/web/News/press_releases/2004/nanosphere.htm

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>