Findings of Novel Nanoproperties in Selenium Produced By Bacteria Open New Area of Exploration

Findings Could Lead to Faster Electronic Devices

Working at the nexus of biology and nanotechnology, a researcher and an alumnus from Rensselaer Polytechnic Institute have released findings that could lead to the tailoring of bacterial processes for a host of smaller, faster semiconductors and other electronic devices.

Pulickel Ajayan, professor of materials science and engineering at Rensselaer, and geobiologist Ronald Oremland reported that three different kinds of common bacteria “grow” the element selenium in the form of uniform nanospheres. The nanoscopic balls exhibit vastly different properties than selenium that is found as a trace mineral in topsoil.

Selenium is used in photovoltaic and photoconductive technologies. It is incorporated in many electronic and technical applications, such as semiconductors, photocopiers, and photocells.

The findings of Ajayan and Oremland were published in the journal Applied and Environmental Microbiology (an American Society of Microbiology publication) in January. A summary of the research also was featured the same month in the “Editor’s Choice” section of Science magazine.

Oremland, a senior scientist at the U.S. Geological Survey in Menlo Park, Calif., and a 1968 Rensselaer biology graduate, has been studying anaerobic bacteria that respire, or “breathe,” soluble salts, or “oxyanions,” of toxic elements, such as selenium and arsenic. He recently discovered that some of these microbes form distinctive selenium nanoscopic balls, each of which measure 300 nanometers in diameter on the outside of their cell envelopes.

Knowing little about what kinds of properties selenium exhibits on the nanoscale level, Oremland turned to his alma mater to enlist the help of Ajayan, an internationally known nanomaterials expert.

“I was interested in finding out whether this type of selenium would be useful. As a biologist, I am not familiar with the various electrical, optical, and other properties of nanomaterials,” said Oremland, the paper’s lead author.

Ajayan and Seamus Curran, a postdoctoral fellow working at the Nanoscale Science and Engineering Center at Rensselaer at the time, found that the nanospheres exhibited enhanced optical and semiconducting properties. They also discovered that the nanospheres grown on each of the three bacteria studied were different from each other and fundamentally different from amorphous selenium particles formed by chemical means.

“Surprisingly, we found different bacteria produce spheres with different arrangements of the selenium atoms and hence different optical properties,” says Ajayan. “Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.”

The research could lead to the production of nanospheres, nanowires, nanorods, and other nanostructures with precise atomic arrangements for smaller, faster semiconductors and other electronic devices.

“This is an excellent example of how Rensselaer researchers are crossing over disciplines in unique collaborations that are opening up new avenues in research and discovery,” said Rensselaer Provost Bud Peterson.

Other collaborators include researchers from University of Guelph in Canada, the Naval Surface Warfare Center in Virginia, and New Mexico State University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Media Contact

Jodi Ackerman RPI

Alle Nachrichten aus der Kategorie: Interdisciplinary Research

News and developments from the field of interdisciplinary research.

Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close