Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universiteit of Groningen launches research centre for synthetic biology

14.03.2008
The University of Groningen now has a Centre for Synthetic Biology (CSB). Synthetic biology is a new phase in biotechnology in which biologists, bioinformaticians, chemists, physicists and engineers work together to construct the elements of a biological cell using chemical and biochemical building blocks. Over the next five years, the University of Groningen will invest EUR 2 million per year in the new research centre.

Key participants in the Groningen initiative are the biochemist Prof. Bert Poolman (director of the new centre), molecular biologist Prof. Roel Bovenberg (also research leader at DSM in Delft), microbiologist Prof. Lubbert Dijkhuizen (director of the Groningen Biomolecular Sciences and Biotechnology Institute), organic chemist Prof. Ben Feringa (Jacobus van ’t Hoff Professor of Molecular Sciences), physicist Prof. Jasper Knoester (director of the Zernike Institute for Advanced Materials) and molecular microbiologist Prof. Arnold Driessen. The key research areas of the CSB are as follows:

- cell factories for producing pharmaceuticals (including antibiotics) and important biological proteins

- systems for controlled drug delivery and new diagnostics

- materials (e.g. biosensors and biochips) based on biological components.

BioBricks

Until recently, biologists, chemists and biochemists were involved in studying complex biological systems. Synthetic biology takes things a step further: cells and cell components are built to a design produced by humans in order to produce specific products or devices. The starting point is not a cell (or cell component) that has evolved, but a synthetic cell (cell component) specifically designed to perform a non-natural function. Among other things, synthesized DNA is used, and natural as well as non-natural building blocks. As in architecture and electrical engineering, cell components (‘BioBricks’) and the production process will be standardized. In the future it may well be possible to build a complete synthetic cell.

Potential

Synthetic biology is seen as the ‘third technological revolution’, following on from the chip, the foundation of modern electronics, and biotechnology made possible with the discovery of the structure of DNA. Synthetic biology combines these two earlier developments, thus opening up new and promising possibilities. The University of Groningen therefore believes that it is of great strategic importance to invest in fundamental research that will advance this groundbreaking technology.

Support

The new centre, with four new Synthetic Biology sections, is not alone in this task, but will be supported by the Zernike Institute for Advanced Materials, the Stratingh Institute for Chemistry, and the Groningen Biomolecular Sciences and Biotechnology Institute (GBB). In the years to come, the CSB will launch an intensive recruitment campaign to attract top researchers and further steps will be taken to establish cooperative partnerships with knowledge centres and businesses in the Netherlands and abroad.

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Interdisciplinary Research:

nachricht OU study expands understanding of bacterial communities for wastewater treatment system
14.05.2019 | University of Oklahoma

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>