Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing a space laser with a NASA-style stopwatch

28.03.2017

To time how long it takes a pulse of laser light to travel from space to Earth and back, you need a really good stopwatch -- one that can measure within a fraction of a billionth of a second.

That kind of timer is exactly what engineers have built at NASA's Goddard Space Flight Center in Greenbelt, Maryland, for the Ice, Cloud and land Elevation Satellite-2. ICESat-2, scheduled to launch in 2018, will use six green laser beams to measure height. With its incredibly precise time measurements, scientists can calculate the distance between the satellite and Earth below, and from there record precise height measurements of sea ice, glaciers, ice sheets, forests and the rest of the planet's surfaces.


Deputy Systems Engineer Phil Luers explains how ICESat-2's ATLAS instrument transmitter and receiver subsystems come together to calculate the timing of photons, which, in turn, measure the elevation of ice. (Video)

Credit: NASA'S Goddard Space Flight Center/Ryan Fitzgibbons

"Light moves really, really fast, and if you're going to use it to measure something to a couple of centimeters, you'd better have a really, really good clock," said Tom Neumann, ICESat-2's deputy project scientist.

If its stopwatch kept time even to a highly accurate millionth of a second, ICESat-2 could only measure elevation to within about 500 feet. Scientists wouldn't be able to tell the top of a five-story building from the bottom. That doesn't cut it when the goal is to record even subtle changes as ice sheets melt or sea ice thins.

To reach the needed precision of a fraction of a billionth of a second, Goddard engineers had to to develop and build their own series of clocks on the satellite's instrument -- the Advanced Topographic Laser Altimeter System, or ATLAS. This timing accuracy will allow researchers to measure heights to within about two inches.

"Calculating the elevation of the ice is all about time of flight," said Phil Luers, deputy instrument system engineer with the ATLAS instrument. ATLAS pulses beams of laser light to the ground and then records how long it takes each photon to return. This time, when combined with the speed of light, tells researchers how far the laser light traveled. This flight distance, combined with the knowledge of exactly where the satellite is in space, tells researchers the height of Earth's surface below.

The stopwatch that measures flight time starts with each pulse of ATLAS's laser. As billions of photons stream down to Earth, a few are directed to a start pulse detector that triggers the timer, Luers said.

Meanwhile, the satellite records where it is in space and what it's orbiting over. With this information, ATLAS sets a rough window of when it expects photons to return to the satellite. Photons over Mount Everest will return sooner than photons over Death Valley, since there is less distance to travel.

The photons return to the instrument through the telescope receiver system and pass through filters that block everything that's not the exact shade of the laser's green, especially sunlight. The green ones make it through to a photon-counting electronics card, which stops the timer. Most of the photons that stop the timer will be reflected sunlight that just happens to be the same green. But by firing the laser 10,000 times a second the "true" laser photon returns will coalesce to give scientists data on surface elevation.

"If you know where the spacecraft is, and you know the time of flight so you know the distance to the ground, now you have the elevation of the ice," Luers said.

The timing clock itself consists of several parts to better keep track of time. There's the GPS receiver, which ticks off every second -- a coarse clock that tells time for the satellite. ATLAS features another clock, called an ultrastable oscillator, which counts off every 10 nanoseconds within those GPS-derived seconds.

"Between each pulse from the GPS, you get 100 million ticks from the ultrastable oscillator," Neumann said. "And it resets itself with the GPS every second."

Ten nanoseconds aren't enough, though. To get down to even more precise timing, engineers have outfitted a fine-scale clock within each photon-counting electronic card. This subdivides those 10-nanosecond ticks even further, so that return time is measured to the hundreds of picoseconds.

Some adjustments to this travel time need to be made on the ground. Computer programs combine many photon travel-times to improve the precision. Programs also compensate for how long it takes to move through the fibers and wires of the ATLAS instrument, the impacts of temperature changes on electronics and more.

"We correct for all of those things to get to the best time of flight we possibly can calculate," Neumann said, allowing researchers to see the third dimension of Earth in detail.

Kate Ramsayer | EurekAlert!

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>