Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue dye could hold the key to super processing power

29.11.2007
A technique for controlling the magnetic properties of a commonly used blue dye could revolutionise computer processing power, according to research published recently in Advanced Materials.

Scientists have demonstrated that they can control the properties in a dye known as Metal Phthalocyanine, or MPc, with the use of magnetism.

Though this technology is still in its infancy, researchers claim that the ability to control the magnetic properties of MPc could have the potential to dramatically improve information processing in the future.

iPods, CD read/writers, and other electronic devices already use magnetism as a system for signalling to process and store information.

Current technology, however, has limitations. According to Moore’s Law - a theory for describing the historical trend of computer hardware development – computer technology will eventually reach a ‘dead end’ as options for shrinking the size and increasing memory run out.

Dr Sandrine Heutz, from Imperial College London’s Department of Materials, and scientists from the London Centre for Nanotechnology, believe results from recent experiments with MPc could provide the answer.

MPc contains carbon, nitrogen and hydrogen and can also contain a wide range of atoms at its centre. In their work they used either a copper or manganese metal atom at its centre. Scientists first observed MPc in 1907 and it has been used ever since as a dye in textiles and paper and has even been investigated for use as an anti-cancer agent.

Dr Heutz made a scientific breakthrough when she experimented with clusters of MPc. She found that she could make the metal centres of MPc have tiny magnetic interactions with one another. Like placing two compasses together and controlling which way the arrows point, she found that she could control how the metal centres of MPc spin in relation to one another.

The secret to controlling this spin lies in the way Dr Heutz experimented with MPc. She grew stacks of MPc in crystal structures on plastic surfaces and then experimented with the preparation conditions. She grew them at room temperature; applied heat; chemically altered the plastic surfaces that the crystals grew on; and changed the way the crystals grew. All these different elements altered the way the metal centres interacted with each other.

After three years of experimentation, the team can now control a set of microscopic interactions between the molecules.

Current information processing uses a switching process of zeros and ones to process and store ‘bits’ of information. Dr Heutz believes she could improve on this process to increase memory. So far the team can switch the interactions from ‘on/off’ and change the state of the interaction from ‘on’ to a different type of ‘on’. They are still experimenting with ways to turn the interaction ‘off/on’. When they find this last interaction Dr Heutz believes she will have a superior set of molecular signals for information processing and storage.

“Electronic devices already use magnetism as a system for processing and storing information. These experiments prove that we will be able to replace the current electro-magnetic process with a magnetic interaction between molecules of MPc,” said Dr Heutz.

Dr Heutz says it could take a further five years to practically apply this technology. When the refinements are complete she believes exploiting MPc molecules will have enormous benefits in the development of ‘spintronics’ - a process which relies on the spin of atoms or molecules to store trillions of bits of information per square inch.

She also believes these molecular interactions have the potential to process ‘qubits’ of information in quantum computing. According to current theories, quantum computing is expected to harness the properties of quantum mechanics to perform tasks that classical computers cannot do in a reasonable time.

“We are still a long way off from applying this technology to the home PC. However, in five years time our experiments will demonstrate that we will have the power to unleash the vast potential of information processing at the molecular level,” she said.

This research was published in Advanced Materials and was carried out by the London Centre for Nanotechnology - a joint enterprise between Imperial College London and University College London. It was funded by the Royal Society (Dorothy Hodgkin Fellowship and Wolfson Research Merit Award); Research Councils UK and the Engineering and Physical Sciences Research Council (EPSRC).

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>