Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue dye could hold the key to super processing power

29.11.2007
A technique for controlling the magnetic properties of a commonly used blue dye could revolutionise computer processing power, according to research published recently in Advanced Materials.

Scientists have demonstrated that they can control the properties in a dye known as Metal Phthalocyanine, or MPc, with the use of magnetism.

Though this technology is still in its infancy, researchers claim that the ability to control the magnetic properties of MPc could have the potential to dramatically improve information processing in the future.

iPods, CD read/writers, and other electronic devices already use magnetism as a system for signalling to process and store information.

Current technology, however, has limitations. According to Moore’s Law - a theory for describing the historical trend of computer hardware development – computer technology will eventually reach a ‘dead end’ as options for shrinking the size and increasing memory run out.

Dr Sandrine Heutz, from Imperial College London’s Department of Materials, and scientists from the London Centre for Nanotechnology, believe results from recent experiments with MPc could provide the answer.

MPc contains carbon, nitrogen and hydrogen and can also contain a wide range of atoms at its centre. In their work they used either a copper or manganese metal atom at its centre. Scientists first observed MPc in 1907 and it has been used ever since as a dye in textiles and paper and has even been investigated for use as an anti-cancer agent.

Dr Heutz made a scientific breakthrough when she experimented with clusters of MPc. She found that she could make the metal centres of MPc have tiny magnetic interactions with one another. Like placing two compasses together and controlling which way the arrows point, she found that she could control how the metal centres of MPc spin in relation to one another.

The secret to controlling this spin lies in the way Dr Heutz experimented with MPc. She grew stacks of MPc in crystal structures on plastic surfaces and then experimented with the preparation conditions. She grew them at room temperature; applied heat; chemically altered the plastic surfaces that the crystals grew on; and changed the way the crystals grew. All these different elements altered the way the metal centres interacted with each other.

After three years of experimentation, the team can now control a set of microscopic interactions between the molecules.

Current information processing uses a switching process of zeros and ones to process and store ‘bits’ of information. Dr Heutz believes she could improve on this process to increase memory. So far the team can switch the interactions from ‘on/off’ and change the state of the interaction from ‘on’ to a different type of ‘on’. They are still experimenting with ways to turn the interaction ‘off/on’. When they find this last interaction Dr Heutz believes she will have a superior set of molecular signals for information processing and storage.

“Electronic devices already use magnetism as a system for processing and storing information. These experiments prove that we will be able to replace the current electro-magnetic process with a magnetic interaction between molecules of MPc,” said Dr Heutz.

Dr Heutz says it could take a further five years to practically apply this technology. When the refinements are complete she believes exploiting MPc molecules will have enormous benefits in the development of ‘spintronics’ - a process which relies on the spin of atoms or molecules to store trillions of bits of information per square inch.

She also believes these molecular interactions have the potential to process ‘qubits’ of information in quantum computing. According to current theories, quantum computing is expected to harness the properties of quantum mechanics to perform tasks that classical computers cannot do in a reasonable time.

“We are still a long way off from applying this technology to the home PC. However, in five years time our experiments will demonstrate that we will have the power to unleash the vast potential of information processing at the molecular level,” she said.

This research was published in Advanced Materials and was carried out by the London Centre for Nanotechnology - a joint enterprise between Imperial College London and University College London. It was funded by the Royal Society (Dorothy Hodgkin Fellowship and Wolfson Research Merit Award); Research Councils UK and the Engineering and Physical Sciences Research Council (EPSRC).

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>