Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next generation of computers will be timeless

08.04.2002


Time is running out for the clocks that make our computers tick. Scientists have developed a new generation of hardware and software based on the simpler designs of the 1950s.



Asynchronous, or clock-free systems, promise extra speed, safety, security and miniaturisation. The new designs work well in the laboratory and are only awaiting the development of software tools so that they can be produced commercially, says Professor Alex Yakovlev and fellow researchers in the Department of Computing Science at Newcastle University, England.

This week (April 8-12) the Newcastle team will present two papers at the International Symposium on Advanced Research into Asynchronous Circuits and Systems, in Manchester, England (see web link). One paper explains the pioneering techniques the team has developed for synthesizing asynchronous systems, the other relates to measuring metastability — a problem which may sound the death knell of conventional computers.


Because computers of the 1950s were relatively simple, they could function without clocks. Since the advent of faster and more complex systems in the 1960s, all hardware design has been based on the principle of the clock — a microelectronic crystal which emits rapid pulses of electricity to synchronise the flow of data. In modern PCs, this is at the heart of the Pentium Processor.

But computer systems are now so complex that clocks are imposing limitations on performance. The electrical pulses, travelling at the speed of light, are not fast enough to keep accurate time as they visit tens of millions of transistors on a single chip.

The result is that errors begin to occur in data. The phenomenon is known as metastability, a fundamental and insoluble problem which is causing increasing difficulty for designers who have to balance the demand for speed and complexity of systems with the need for reliability.

‘In binary terms, incoming data has a metastable state in which it is neither true nor false,’ said Professor Yakovlev. ‘A resulting system failure would be inconvenient to a PC user and could result in a disaster in an industry where reliability is critical, such as aviation.’

Asynchronous systems rely on a protocol of data transmission and acknowledgement which is not regulated by time. This can happen locally within a computer or globally between computers. Before data is exchanged, there must first be a ‘handshake’, or agreement on the mutually acceptable protocol.

Computer clocks generate heat as well as high frequencies, since they consume large amounts of power. To abolish them would allow portable devices to run on less power, enabling further miniaturisation.
Hackers would also be troubled by asynchronous systems, since the irregular pattern of data transmission allows the information to be encrypted far more effectively than at present.

Professor Yakovlev believes that the clock-based system is nearing the end of its useful life, with designers facing increasing difficulties as systems become more complex.

‘One of the problems is that all graduates entering the industry are immediately taught to design systems with clocks. It will be difficult to persuade them to change their ways,’ he admits.

‘We have shown that asynchronous systems work but we need to develop simple tools for commercial design and testing purposes. In my opinion, this is the last piece of the jigsaw.’

One of the barriers is that designing asynchronous systems requires the use of a new computer language, called Petri Net. At Newcastle, scientists are developing a design system which overcomes this problem by automatically translating Petri Net into orthodox computer language as asynchronous circuit designs are mapped out.

Such innovations are making asynchronous technology a more attractive commercial proposition and there are signs that the world is now at the dawn of the transitional period. Scientists talk of an intermediate system developing, nicknamed GALS — Globally Asynchronous, Locally Synchronous.

It is no secret that electronics company Philips has produced an experimental pager built from asynchronous circuits and is developing other devices based on the same principle (see web links). It is also rumoured that a leading manufacturer is designing the next generation of computer processor with at least some asynchronous elements.

Just over a year ago, the New York Times reviewed the concept of asynchronous design in a business article and claimed that ‘most of the mainstream computer world is not convinced that a wholesale change of the way industry designs and manufacturers chips is practical’ (see web link). However, researchers have opened up new horizons over the past year and many experts believe that widespread introduction of this new technology is now only a matter of time.

Michael Warwicker | alphagalileo

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>