Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web-based attacks could create chaos in the physical world

02.05.2003


Computer security researchers suggest ways to thwart new form of cybercrime



Most experts on computer crime focus on attacks against Web servers, bank account tampering and other mischief confined to the digital world. But by using little more than a Web search engine and some simple software, a computer-savvy criminal or terrorist could easily leap beyond the boundaries of cyberspace to wreak havoc in the physical world, a team of Internet security researchers has concluded.

At a recent Association for Computing Machinery conference on privacy in an electronic society, the researchers -- including a Johns Hopkins faculty member -- described how automated order forms on the Web could be exploited to send tens of thousands of unwanted catalogs to a business or an individual. Such an onslaught would not only pose problems for the victim, but it could also paralyze the local post office charged with making such deliveries, the researchers suggested. After explaining how such attacks could take place, the researchers proposed several technological "fixes" that could help prevent them.


The rapid growth of the World Wide Web has enabled many merchants, government agencies and non-profit organizations to make sales catalogs and information packets available to anyone who can fill out a simple on-line form. But these forms, the researchers say, have also opened a gateway that could allow disruptive activity to spill out of cyberspace. "People have not considered how easily someone could leverage the scale and automation of the Internet to inflict damage on real-world processes," said Avi Rubin, technical director of the Information Security Institute at The Johns Hopkins University and one of the authors of the paper.

Rubin and two other researchers first determined that a popular search engine such as Google could be used to locate online order forms. They also discovered that simple software could be launched to automatically recognize and fill in fields such as "name," "address" and "city," and then submit the catalog request online. "It could be set up to send 30,000 different catalogs to one person or 30,000 copies of one catalog to 30,000 different recipients," said Rubin. "This could create a great expense for the sender, a huge burden for local postal facilities and chaos in the mail room of a business targeted to receive this flood of materials."

The technique could also be used to exploit the increasingly common Web-based forms used to request repair service, deliveries or parcel pickups, said Rubin, who also is an associate professor in the Department of Computer Science at Johns Hopkins. Tracking down the attacker could be difficult, he added. The offender could easily escape detection by loading the program onto a floppy disk or a small USB hard disk and paying cash for a few minutes of time at an Internet café. By the time the damage was discovered, the culprit would have vanished, Rubin said.

Because of the confusion and costs such attacks could inflict, Rubin and his fellow researchers wondered whether they should make public the technological weakness they’d uncovered; by doing so, they might provide a "blueprint" for people to launch such attacks. With this in mind, they did not publish their paper for some time after the initial research was done. However, after a popular search engine introduced its new Application Programming Interfaces, the researchers concluded that the attacks they envisioned were now much more likely to occur. In their paper they stated that "there is also a risk in not disclosing vulnerabilities for which there are known solutions. By not educating people who are in a position to defend against an attack, it can be more damaging to bury knowledge of a vulnerability than to announce it."

The researchers suggested several methods to deter the attacks they described. One is to set up online forms so that they cannot easily be picked up by a search engine. Another is to alter the HTML coding used to create an online form so that it no longer contains easily recognizable field names such as "name" and "address." (Such coding changes would not be visible to the person filling out the form.)

Yet another option is to include in each form a step that must be completed by a human computer user. This process, called a Reverse Turing Test, could display writing that could not easily be recognized by a computer, or it could require some other visual task that would trip up an automated ordering program. Other deterrents suggested by the researchers include client puzzles and monitored systems called "Honeypots," which are set up to attract cyber-attackers for early detections.

Hoping to prevent the type of cyber-attacks they’ve envisioned, the researchers have conferred with a top technology administrator from the U.S. Postal Service and have made their concerns and recommendations public on the Web. "To prevent these damaging activities," Rubin said, "we need to look at the interface between cyberspace and the real world and to make sure there is a real person submitting a legitimate request, not a computer program launching a disruptive attack."

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.avirubin.com/scripted.attacks.pdf
http://www.avirubin.com

More articles from Information Technology:

nachricht Electronic stickers to streamline large-scale 'internet of things'
17.07.2018 | Purdue University

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>