Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote data processing makes tele-immersion system first ’network computer’

19.11.2002


When they make their first public demonstration of tele-immersion at this week’s Super Computing 2002 conference in Baltimore, computer scientists will also attain another first: a "network computer" that processes data at a location far removed from either input or output.



While the tele-immersion system will gather and display information in side-by-side booths at the Baltimore Convention Center, actual data processing will occur some 250 miles away at the Pittsburgh Supercomputing Center. Previous demonstrations of tele-immersion, a next-generation type of ultra-realistic videoconferencing that draws upon Internet2 and technology similar to that used in 3D movies, have relied upon local computing power at the University of Pennsylvania and other participating institutions.

"Shifting the computing from 10 processors at Penn to 1,240 parallel machines based in Pittsburgh will speed data processing 75-fold, turning tele-immersion into a true real-time technology," said Kostas Daniilidis, an assistant professor of computer and information science at Penn. "It now takes our tele-immersion system roughly 15 seconds to scan, process and display the entire volume of a typical room. With help from the Pittsburgh Supercomputing Center, that time will shrink to 200 milliseconds."


This week’s tele-immersion demonstration in Baltimore, presented by scientists from Penn and the University of North Carolina at Chapel Hill, is the first large-scale public display of the technology. Drawing on a bank of cameras that constantly scans participants and their surroundings, tele-immersion allows participants in different states to feel as if they’re chatting in the same room. But gathering such comprehensive, real-time measurements of a person and his environment takes a toll: Tele-immersion generates huge amounts of data, requiring massive computing power and bandwidth.

The boost in computing power achieved with the move to the Pittsburgh Supercomputing Center will permit at least one significant advance in tele-immersion’s capabilities: For the first time, the system will be able to image an entire room in real time. Previously, limited processing power restricted the gathering of images to a small area where participants were seated, while the background was static, not unlike a television anchor seated before an unchanging image of a city skyline.

"The reassigning of tele-immersion data processing to a faraway supercomputing center is a milestone for grid computing, which uses remote machines to process data," Daniilidis said. "If connections are fast enough -- as with Internet2 -- the network itself becomes a giant computer, linking processors scattered over many hundreds of miles. This tele-immersion experiment shows definitively that a network computer configured this way can handle extremely data-intensive operations much more quickly than if processing were occurring within the confines of a single room."

All this computing is for a good cause. Daniilidis and his colleagues say tele-immersion may well revolutionize the way people communicate, allowing people on opposite ends of the country or world to feel temporarily as if they’re in each other’s presence. Key to tele-immersion’s realistic feel are a hemispherical bank of digital cameras that capture participants from a variety of angles and tracking gear worn on their heads. Combined with polarized glasses much like those worn at 3D movies, the setup creates subtly different images in each eye, much as our eyes do in daily life.

The tele-immersion collaboration involving Penn, UNC and the Pittsburgh Supercomputing Center is funded by the National Science Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>