Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high frequency amplifier harnesses millimeter waves in silicon for fast wireless

13.02.2009
UC San Diego electrical engineers presents record breaking amplifier for high capacity wireless communications systems at ISSCC 2009

New imaging and high capacity wireless communications systems are one step closer to reality, thanks to a millimeter wave amplifier invented at the University of California, San Diego and unveiled on Feb 11, 2009 at the prestigious International Solid-State Circuits Conference (ISSCC) in San Francisco, Calif.

The new silicon-based amplifier marks progress toward high capacity wireless communications systems that will operate at millimeter wave frequencies (70-110GHz) and could provide data transfer rates as fast as 10 Gigabits per second over a kilometer. Toward this goal, the new amplifier provides both high gain (the ability to increase the volume of a signal) and high bandwidth (the ability to do it over a broad range of tones).

It has a direct transmission line path from the input to the output that carries electromagnetic waves—undisrupted—across the surface of a silicon chip. Amplification "stages" along this transmission line boost the signal power by monitoring the signal amplitude and generating feedback in just trillionths of a second, feedback that injects additional energy in phase to the signal. The amplifier provides record-breaking gain of 26-30dB at 100GHz and allows wave propagation along the chip surface.

James Buckwalter, an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego's Jacobs School of Engineering, invented the amplifier and named it the Cascaded Constructive Wave Amplifier.

"Cascaded constructive wave amplification is a new circuit architecture that can push silicon into new operating regimes near the fundamental limits of Moore's Law and allow the ultra high data rates that the millimeter wavelength range of the electromagnetic spectrum offers," explained Buckwalter.

The millimeter wavelength range of the electromagnetic spectrum is relatively unexplored for commercial use, in part, because it has been difficult and expensive to build the necessary high frequency amplifiers. Many of today's millimeter wave amplifiers, for example, require exotic and expensive semiconductor materials.

"We're exploring how silicon can play a role at frequencies exceeding 100 Gigahertz. Silicon has the advantage of allowing inexpensive integration of microwave and now perhaps millimeter wave components," said Buckwalter.

A is for Amplification

Today's Wi-Fi and WiMax systems operate at a frequency of 2.5-5GHz and are capable of handling megabits of information per second. "If you want higher data rates, you need to find ways to transmit information wirelessly at rates faster than what is available at 2.5 Gigahertz. This new amplifier is aimed at opening millimeter wave frequency bands, where much more bandwidth are available and where higher data transfer rates, as fast as 10 Gigabits per second over a kilometer, are possible," explained Buckwalter.

Point-to-point wireless communication is a low-cost approach to getting optical fiber speeds. "You could use this amplification method to boost signal strength of a 100 Gigahertz signal from the transmitter in your ISP and also at the receiver in your home to detect the signal," explained Buckwalter.

Feedback Tames the Wave

"The really cool thing about this chip is that it's the first time traveling waves have been amplified along an uninterrupted transmission line...we've found a new architecture that allows higher gain than what people supposed for waves traveling near the speed of light on silicon chips," said Buckwalter.

The periodic amplification stages along the transmission line are crucial to the amplification process. They monitor waves as they propagate through the transmission line and spontaneously inject energy into the wave without interrupting its propagation down the transmission line.

In particular, the strength of the wave is constantly monitored at the output side of each amplification stage. Feedback is provided through a fast transistor that feeds energy into the input of the transmission line and hits the wave with that energy 2.5 trillionths of a second later—a quarter of the wave's period. In this way, the wave is constantly being strengthened as it moves uninhibited through each of the amplification stages along the transmission line.

This new amplifier design is distinctly different from existing amplifier technologies. The new Cascaded Constructive Wave Amplifier provides high gain—the signal gain increases exponentially with the number of amplification stages—without absorbing and regenerating the wave energy. The cascaded amplifiers that are found in all cell phones also have high gain——but they absorb and regenerate signals.

"We've taken a wave that travels along the surface of the silicon near the speed of light and found a way to amplify the signal strength without interrupting the wave," said Buckwalter. "We have found a way to tame millimeter waves on silicon."

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>