Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene: A patterned template for molecular packing

11.10.2012
Simulations of atomic-scale processes show how to trap and pack molecules in patterned graphene sheets that may have molecular storage applications

Graphene’s versatile electronic, chemical and mechanical properties have placed it center stage in physical sciences research, with attention currently focused on its potential applications.


An array of graphone domains (blue), containing trapped fullerene molecules (red), distributed in a graphene matrix. Reproduced, with permission, from Ref. 1 © 2012 IOP Publishing

Computational experts are contributing unique insights by investigating graphene-based structures in silico. By exploring the structure and properties of graphone — graphene that is hydrogenated on one side — a research team from Singapore and the USA has provided a potential template for packing molecules. These structures could be useful for trapping molecules for energy storage or biological applications.

Led by Chilla Damodara Reddy of the A*STAR Institute of High Performance Computing, Singapore, the research team computationally constructed a large square graphene sheet with hydrogen atoms covalently bonded above every other carbon atom to form a graphone domain. Depending on the size of the domain, the graphone regions distorted into three distinct three-dimensional architectures. Small domains morphed into a cap shape, while larger domains resulted in interfacing graphene and graphone segments curving in opposite directions with the center of the graphone patch remaining flat. A third, intermediate, morphology showed undulations both at the graphone/graphene interface and in the center of the hydrogenated graphone. A 5% lattice mismatch between graphene and graphone caused the three-dimensional distortions.

All of the structures were stable well above room temperature. Reddy and co-workers also observed so-called ‘energy wells’ in the graphone domains, which they tested to determine whether or not they could trap molecules. They used fullerenes as their model molecules.

The researchers designed materials with graphone domains a suitable distance apart and of appropriate diameter to optimize the trapping of multiple molecules within the energy wells. They also proposed a minimum spacing between the domains to prevent instability between trapped molecules of neighboring domains.
Reddy and his co-workers extended the work to explore the possibility of trapping multiple fullerenes within one graphone domain. They showed that a domain with a diameter of 2 nanometers could trap three fullerenes in a triangular array, while one with a diameter of 4 nanometers could trap twelve molecules in different undulations of the graphone domain (see image). These structures were also stable at room temperature; although at very high temperatures — above 700 kelvin — the molecules could escape the confines of the energy well.

“Our graphene-based structures provide a potential template for packing other molecules, such as hydrogen and methanol molecules, which could be used in energy applications,” say the researchers. They could also trap proteins and DNA for use in biological applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Reddy, C. D., Zhang, Y. W. & Shenoy, V. B. Patterned graphone — a novel template for molecular packing. Nanotechnology 23, 165303 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>