Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug discovery leverages SIMDAT Grid technology

18.09.2008
Step change in life sciences. Within the European SIMDAT project, at GlaxoSmithKline (GSK) a substantial progress in pharmaceutical analysis has been achieved.

It enables pharmaceutical companies to Virtualise and Globalise their Research and Development (R&D) chain, lowering costs as well as considerably improving knowledge exchange between industrial and academic partners.

“One of the most important R&D strategies to achieve a significant gain of efficiency is to tap into external knowledge and expertise through a network of external alliances, sharing the risk, reward and control. Given the large investments in drug research, Virtualisation provides a great savings potential,” summarizes Professor Ulrich Trottenberg, director of Fraunhofer Institute for Algorithms and Scientific Computing SCAI, the SIMDAT project co-ordinator, the current challenges in pharmaceutical drug discovery.

“With the distributed nature and diverse location of biological data for disease and medical treatment, it is becoming vital to be able to fast and flexible connect to these resources. Grid as a key part of Information Technology supports the organisations’ rapid movement into the virtualised and now more globalised information market,” says Rob Gill, Head of Biology Domain Architecture at GSK. “The SIMDAT Grid technologies developed by GlaxoSmithKline (GSK), NEC, Inpharmatica (Galapagos), InforSense and Fraunhofer Institute for Algorithms and Scientific Computing SCAI provide a new business model in the life science sector, which can be considered as a success of the project as a whole.”

Usually, establishing new relationships by creating a new virtual organisation (VO) may take up to several months. But the “Data Grid” paradigm can reduce this to weeks or even days. The VO in this case demonstrates how a pharmaceutical company could partner with an academic group and a vendor company to look at a specific disease and drug target. The duration of this relationship depends on the questions asked and the costs incurred by the interaction. Biotech, on the other hand, has the opportunity to get access to new markets and, hence, is in the position to increase its commercial offer by implementing a finer grained product portfolio.

Knowledge exchange within SIMDAT is not bound to local infrastructure but is tending away from organisational, process and technology limitations. Thus, pharmaceutical companies like GSK have now the possibility to scale their business relationship with both biotech companies like Inpharmatica (Galapagos) and academic partners. That is, they can restrict themselves to exactly those resources they are interested in and are not forced to subscribe to a complete and costly product. This can be realised by new, grid-based middleware components, used to securely and transparently integrate distributed data repositories, in combination with distributed execution of process chains.

Through Virtualisation pharmaceutical companies like GSK are now capable of scaling their business relationship with both industrial and academic partners and take advantage of its great savings potential. In addition Globalisation is getting more and more crucial to keep up in an international context, especially considering the rate of growth of scientific and technical graduates in Asia is already outpacing the United States and Europe. Virtualisation has also the means to benefit from this wealth of knowledge along with developments in the global market.

Current industry applications can already take advantage of SIMDAT technologies. This was successfully demonstrated by a workflow-based test system implemented at GSK by InforSense, consisting of five different remote sites and including data services of two external companies. The development of this workflow is driven by the need to get high quality, state of the art analysis for pharmaceutical companies from wherever it is best sourced. Thus was shown that pharmaceutical R&D processes can be outsourced across multiple organizations, even if they are using different specifications. Thereby the central industrial requirement for a controlled and secure interaction has been fully addressed through internet security models provided by NEC.

As a powerful tool for knowledge exchange, SIMDAT technology broadens the scope of the drug discovery chain and is able to import the best of bread analysis from both academia and vendors at appropriate costs. It is an ideal showcase for potential providers who are interested in working with pharmaceutical partners in a more collaborative and beneficial manner rather than purely in a simple vendor consumer relationship.

SIMDAT has received research funding by the European Commission under the Information Society Technologies Programme (IST), contract number IST-2004-511438. Maximum Community contribution to project: 11 Mio Euro, Project start: 1 September 2004, Duration: 48 months, Partners involved: 27. The project is coordinated by the Fraunhofer Institute SCAI in Sankt Augustin, Germany.

Michael Krapp | Fraunhofer-Gesellschaft
Further information:
http://www.scai.fraunhofer.de
http://www.simdat.eu

Further reports about: Algorithms Computing GSK GlaxoSmithKline Grid Inpharmatica SCAI SIMDAT drug discovery

More articles from Information Technology:

nachricht 5G is smartening up production
23.08.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Software for diagnostics and fail-safe operation of robots developed at FEFU
23.08.2019 | Far Eastern Federal University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>