Noble Fungi

When fungi, such as penicillium, grow, they form a thread-like network, the mycelium. If the fungus is grown in a medium containing nanoscopic particles of a noble metal, the resulting mycelium is coated with the nanoparticles.

As researchers from the Technical University in Dresden and the Max Planck Institute for the Chemical Physics of Solid Materials in Dresden (Germany) report in the journal Angewandte Chemie, such hybrids could be an interesting new approach for the production of catalytic systems.

The team, led by Alexander Eychmüller and Karl-Heinz Pée, cultivated various types of fungus in media with finely divided (colloidal) nanoparticles of noble metals. In the presence of the tiny gold, platinum, or palladium particles, the fungi grew with no appreciable impairment. Silver particles, which are toxic to microorganisms, were also tolerated by one variety of fungus. The nanoparticles are deposited on the surface of the growing mycelium—without any special modification beforehand. Thus hybrid systems made of fungi and noble metals are formed: tubular hyphae covered in multiple layers of individual nanoparticles.

The optical properties of nanoscopic particles depend on their size. The researchers determined that the optical properties of their deposited particles differ only slightly from those of the nanoparticles in solution. Fungal threads with a 0.2µm gold covering thus appear reddish brown, like a solution of such gold nanoparticles. This is evidence that the nanoparticles have not aggregated to form larger units.

Because the particles remain separate, the mycelium-bound noble metal nanoparticles should also retain their special catalytic activities. The researchers were thus able to determine that a platinum–fungus hybrid catalyzes the redox reaction of hexacyanoferrate and thiosulfate in aqueous solution. The “enobled” fungal mycelium offers a system easy to separate from the solution after the reaction and a highly specific surface—important for a catalyst.

Author: Alexander Eychmüller, Technische Universität Dresden (Germany), http://www.chm.tu-dresden.de/pc2/AlexLebenslaufWeb.shtml

Title: Fungal Templates for Noble-Metal Nanoparticles and Their Application in Catalysis

Angewandte Chemie International Edition 2008, 47, No. 41, 7876–7879, doi: 10.1002/anie.200801802

Media Contact

Alexander Eychmüller Angewandte Chemie

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Simplified method to modify disease signaling with light

Most diseases are caused by aberrant cell signaling processes and basic research in cell signaling is needed to identify targets for future therapeutic approaches, especially in cases where no cures…

Highly selective membranes

Researchers discover how water can affect its own filtration. Membranes with microscopic pores are useful for water filtration. The effect of pore size on water filtration is well-understood, as is…

Interactions within larger social groups can cause tipping points in contagion flow

The distribution of group interactions in a social network affects the critical point at which explosive jumps in opinion, popularity, or disease spread occur. Contagion processes, such as opinion formation…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close