Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected microbes fighting harmful greenhouse gas

21.11.2012
Nature has a larger army than previously thought combating nitrous oxide -- according to a study by Frank Loeffler, University of Tennessee, Knoxville -- Oak Ridge National Laboratory Governor's Chair for Microbiology, and his colleagues

The environment has a more formidable opponent than carbon dioxide. Another greenhouse gas, nitrous oxide, is 300 times more potent and also destroys the ozone layer each time it is released into the atmosphere through agricultural practices, sewage treatment and fossil fuel combustion.

Luckily, nature has a larger army than previously thought combating this greenhouse gas—according to a study by Frank Loeffler, University of Tennessee, Knoxville–Oak Ridge National Laboratory Governor's Chair for Microbiology, and his colleagues.

The findings are published in the Nov. 12 edition of the Proceedings of the National Academy of Sciences.

Scientists have long known about naturally occurring microorganisms called denitrifiers, which fight nitrous oxide by transforming it into harmless nitrogen gas. Loeffler and his team have now discovered that this ability also exists in many other groups of microorganisms, all of which consume nitrous oxide and potentially mitigate emissions.

The research team screened available microbial genomes encoding the enzyme systems that catalyze the reduction of the nitrous oxide to harmless nitrogen gas.

They discovered an unexpected broad distribution of this class of enzymes across different groups of microbes with the power to transform nitrous oxide to innocuous nitrogen gas. Within these groups, the enzymes were related yet evolutionarily distinct from those of the known denitrifiers. Microbes with this capability can be found in most, if not all, soils and sediments, indicating that a much larger microbial army contributes to nitrous oxide consumption.

"Before we did this study, there was an inconsistency in nitrous oxide emission predictions based on the known processes contributing to nitrous oxide consumption, suggesting the existence of an unaccounted nitrous oxide sink," said Loeffler. "The new findings potentially reconcile this discrepancy."

According to Loeffler, the discovery of this microbial diversity and its contributions to nitrous oxide consumption will allow the scientific community to advance its understanding of the ecological controls on global nitrous oxide emissions and to refine greenhouse gas cycle models.

"This will allow us to better describe and predict the consequences of human activities on ozone layer destruction and global warming," said Loeffler. "Our results imply that the analysis of the typical denitrifier populations provides an incomplete picture and is insufficient to account for or accurately predict the true nitrous oxide emissions."

Loeffler collaborated with researchers from the University of Illinois in Urbana-Champaign; the Georgia Institute of Technology; the U.S. Department of Agriculture in Urbana, Ill.; the University of Puerto Rico; and the National Institute of Abiotic Stress Management in Pune, India.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>