Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pro-environmental technologies for the de-inking of wastepaper

25.08.2004


VTT Technical Research Centre of Finland has developed new technologies for further use of wastepaper in an optimal and environmentally acceptable way. The particular problem in this process was the mixing of digitally printed paper and normal household wastepaper in the collection phase, which deteriorates the de-inking result. The new technologies improve the recyclability of fibres and decrease the amount of unexploitable fibre. These alternative technologies can make the conventional de-inking processes more efficient and even replace them.



The new technologies, high-power ultrasound processing and magnetic separation, enable printing ink to be separated from fibres with lower amounts of chemicals in comparison to current technologies. This environmentally friendly process saves fibres, improves the recyclability of them and decreases the amount of unexploitable fibres, the so-called zero fibres.

Conventional methods, generally flotation and/or washing, are well-suited to the processing of household wastepaper for the time being. However, increased amounts of digitally printed paper in household wastepaper will significantly change the situation in terms of both ink composition and adhesion. In de-inking it is essential that the size of printing ink particles, or the non-uniformity of ink, is correct when de-inking is performed by flotating.


Digitally printed ink detaches in large particles, but high-power ultrasound can be used for splitting ink particles into a size suitable for the process and promoting the detachment of ink from the fibres. On the other hand, several printing ink qualities of office wastepaper contain ferromagnetic, or iron-bearing, components and these are thus easily separated from the de-inked pulp through magnetic separation and lower amounts of chemicals.

Two patent applications have been filed for the technologies developed in the project. The development of pilot-scale equipment is now being continued as part of the factory process, and the objective of this work is a low chemical and energy saving de-inking process for office wastepaper, applying the magnetic separation and ultrasound treatment technology. The analysis methods developed in the project are also well-suited to the quality control of the de-inking process and de-inked pulp.

The high-power ultrasound equipment and magnetic separator will bring distinct quality improvements, particularly in the manufacture of soft tissues. Thanks to these new technologies, it will be possible for equipment manufacturers to launch new products on the market and de-inking plants will be able to improve their de-inking process according to changing raw materials.

VTT’s co-operation partners in this project have been , TEKES, Metso Paper, Raisio Chemicals (currently CIBA Speciality Chemicals), UPM, MetsaeTissue, Paperinkeraeys, SICPA, PQ Finland, Norem Magnets, Finnsonic, and other players in the forest cluster.

VTT co-ordinates Finnish participation in the EU’s COST E46 project called "Improvements in the Understanding and Use of De-Inking Technology".

Pia Qvintus-Leino | alfa
Further information:
http://www.vtt.fi

More articles from Ecology, The Environment and Conservation:

nachricht Robotic fish to replace animal testing
17.06.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht Marine oil snow
12.06.2019 | University of Delaware

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>