Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inuit whalers changed Arctic ecosystems long before arrival of Europeans

27.01.2004


Earliest evidence of humans affecting aquatic ecology in Canada, United States


Photo credit: J.P. Smol



New findings from Canadian scientists dispel the belief that European settlers were the first humans to cause major changes to Canadian and U.S. freshwater ecosystems.

A University of Toronto-led, multidisciplinary team including researchers from Queen’s, McGill, and University of Ottawa show for the first time that prehistoric Inuit whalers dramatically altered high Arctic pond ecosystems through their hunting practices eight centuries ago – a legacy that is still evident today.


The principal investigator on the team, U of T Geology Professor Marianne Douglas, is currently in Antarctica using the same kind of detection techniques to study climate change there.

“Our findings are an example of a long-term human intervention in a place where you really don’t expect it,” says Queen’s Biology Professor John Smol, Canada Research Chair in Environmental Change and co-head of the university’s Paleoecological Environmental Assessment and Research Laboratory (PEARL). “It seems totally ironic since we tend to think of the high Arctic as being unaffected by humans locally.”

Results of the study will be published in the Proceedings of the National Academy of Sciences on-line early edition the week of Jan 26.

The researchers conducted their study on Somerset Island in the Canadian Arctic, where prehistoric Thule whalers (ancestors of the present day Inuit) had the highest concentration of settlement between 400 and 800 years ago. They brought with them a well-developed whaling technology that included large open skin boats, whaling harpoons and lances, and seal skin floats. A semi-nomadic people, the Thule settled in temporary camps each summer, and in the winter returned to semi-permanent villages constructed partially from whalebone.

According to James Savelle, the McGill University archeologist on the research team, while the number of bowheads killed each year would have varied, during the more productive whaling seasons four to six animals may have been landed. The Thule were clearly very innovative, and developed methods to use well over 60% of the whale for food, fuel, and even building materials for their houses. “That’s a lot of biomass, and therefore potential nutrients, available for the surrounding ecosystem,” adds team member Jules Blais, a biologist from University of Ottawa.

It was the decomposing bones and flesh of the whale – and probably other sea mammals such as seals – slowly leaching nutrients into a nearby shallow pond and surrounding soil that permanently altered the area’s ecology. To reconstruct this history, the team collected sediment cores from the bottom of the pond and analyzed the fossil “markers” (tiny algal cells) preserved in each layer. As sediments slowly accumulate over time, they represent an archive of past environmental change.

Diatom algae, characterized by glass walls, provide an excellent record of past lake conditions, explains Dr. Smol. The markers indicate a substantial increase of moss growth and nutrients in the water, coinciding with deposits of nutrient-rich whalebones and other refuse. “It’s as if the pond had been fertilized, changing the type of algae that could grow there,” he says. The researchers also believe the moss growth increased considerably as a result of human interference – and in fact may have acted as a “positive feedback system” encouraging them to stay in the area, since moss was used as insulation in the construction of their dwellings.

Even though the whalers left four centuries ago, the legacy of this interaction remains today, Dr. Smol adds. “Former Thule whaling sites still have higher nutrient levels, atypical algae, and more productive conditions in general.”

Dr. Douglas, the team leader, calls their study “a good example of how lake and pond sediment analysis can be used to study the effects of human activities on ecosystems. In the future we hope to apply these techniques to investigate other archeological sites – some of which go back even farther – in the Arctic and elsewhere,” she says.

Funding came from the Natural Sciences and Engineering Research Council (NSERC), the Polar Continental Shelf Project, and the Social Sciences and Humanities Research Council (SSHRC).

Contacts:

Nancy Dorrance, Queen’s News & Media Services, 613.533.2869
Karen Kelly, University of Toronto News Services, 416.978.0260

Nancy Dorrance | Queen´s University
Further information:
http://biology.queensu.ca/~pearl/images/

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>