Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are cities changing local and global climates?

15.12.2003


Satellite Images of Houston Metro Area

These images show the Houston metropolitan area, where buildings, roads and other built surfaces create urban heat islands that can affect local rain patterns. The images were taken by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), an imaging instrument that is flying on Terra, a satellite launched in December 1999 as part of NASA’s Earth Observing System (EOS). Credit: NASA/J


Higher Rainfall Rates Downwind of Texas Cities

This image shows areas where urban heat islands influenced higher rainfall rates (in blue) downwind of major cities connected by Interstate 35, known as the I-35 corridor in Texas. The winds that carried clouds and rainfall downwind (in this case, south and east of urban areas) occurred roughly 3.0 kilometers (1.9 miles) above the surface. Rainfall was measured by the precipitation radar instrument on NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite. The higher rainfall rates depicted here were derived from measurements of mean monthly rainfall during the warm seasons (May through September) from 1998 through 2000. Credit: Jim Williams, Scientific Visualization Studio, NASA/Goddard Space Flight Center


New evidence from satellites, models, and ground observations reveal urban areas, with all their asphalt, buildings, and aerosols, are impacting local and possibly global climate processes. This is according to some of the world’s top scientists convening in a special session at the Fall Meeting of the American Geophysical Union in San Francisco.

To study urban impact on local rainfall, Dr. J. Marshall Shepherd of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Steve Burian of the University of Utah, Salt Lake City, used the world’s first space-based rain radar, aboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and dense rain gauge networks on land to determine there are higher rainfall rates during the summer months downwind of large cities like Houston and Atlanta. Burian and Shepherd offer new evidence that rainfall patterns and daily precipitation trends have changed in regions downwind of Houston from a period of pre-urban growth, 1940 to 1958, to a post-urban growth period, 1984 to 1999.

Cities tend to be one to 10 degrees Fahrenheit (0.56 to 5.6 degrees Celsius) warmer than surrounding suburbs and rural areas. Warming from urban heat islands, the varied heights of urban structures that alter winds, and interactions with sea breezes are believed to be the primary causes for the findings in a coastal city like Houston.



In related work, Dr. Daniel Rosenfeld, an atmospheric scientist at Hebrew University, Jerusalem, reveals the increased amount of aerosols, tiny air particles, added by human activity to those naturally occurring also alter local rainfall rates around cities. Rosenfeld suggests the particles provide many surfaces upon which water can collect, preventing droplets from condensing into larger drops and slowing conversion of cloud water into precipitation. In summer, rain and thunder increases downwind of big cities, as rising air from urban heat islands combines with ’delayed’ rainfall resulting from the presence of aerosols, creating bigger clouds and heavier rain.

To help scientists like Shepherd and Rosenfeld improve understanding of links between city landscapes and climate processes like rainfall, NASA’s suite of Earth observing satellites provides information about the land cover/land use properties that initiate the urban effects. The satellites also track the aerosols, clouds, water vapor, and temperature that describe atmospheric conditions in urban environments. Their measurements allow scientists to make end-to-end studies of urban impacts on the climate system practically anywhere on Earth.

"The space-borne instruments on Terra, Aqua, TRMM, and Landsat provide a wealth of new observations of aerosol particles near and downwind of cities, the cloud optical properties, and surface reflectance characteristics that can help us understand the effects that urban environments have on our atmosphere and precipitation patterns," said Dr. Michael King, NASA Earth Observing System Senior Project Scientist. "Aura, to be launched in 2004, will add even more data," he said.

With growing evidence of the effects of urbanization on climate, climate modelers, like Georgia Institute of Technology’s Dr. Robert Dickinson, hope to account for the cumulative effects of urban areas on regional and global climate models. For example, since asphalt has such a large effect on local heat transfer, water run-off, and how winds behave, characterizing asphalt cover is probably the biggest urban effect to be factored into global models.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Shepherd, King, Rosenfeld, and Dickinson will present their findings during a press conference on Thursday, December 11, 2003, at 3 p.m., PST in Room 2012, Moscone West, at the 2003 Fall Meeting of the American Geophysical Union in San Francisco.

They also will convene a special session, organized by Shepherd and Dr. Menglin Jin of the University of Maryland, detailing these results on Human-Induced Climate Variations Linked to Urbanization: From Observations to Modeling, sessions U51A and U51C, starting on Friday morning, December 12, at 2:00 p.m. PST at MCC 3001-3003. B-roll of video is available on this topic, by calling Wade Sisler of NASA-TV at 301/286-6256.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/1211urban.html

More articles from Ecology, The Environment and Conservation:

nachricht Study: We need more realistic experiments on the impact of climate change on ecosystems
16.09.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Plastics, fuels and chemical feedstocks from CO2? They're working on it
10.09.2019 | DOE/SLAC National Accelerator Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>