Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and Resource Protection for Africa

29.05.2008
Cooperation of University of Stuttgart with the Cities of Johannesburg and Addis Abeba

More than half of the world population lives in urban areas by now - rising continues. As a consequence the challenges in the fields of infrastructure, energy and environment are growing. Against this background two research projects of the University of Stuttgart seek to develop solutions for these problems.

In the first project scientists identify and evaluate instruments for achieving a sustainable energy supply and climate protection in the South African ‘City Region of Gauteng’, comprising the cities of Johannesburg, Ekurhuleni and Tshwane (incl. Pretoria). The second project is dedicated to the waste management in Ethiopians capital Addis Abeba. It is conducted in cooperation with the local University and NGOs.

The aim of the project is to reduce the greenhouse gases and to allow additional employments with acceptable working conditions. In both projects, the University of Stuttgart, the city of Stuttgart and the cities of Johannesburg, Ekurhuleni and Tshwane as well as the city of Addis Abeba are closely integrated. The official project start is June, 1st. The German Federal Ministry of Education and Research (BMBF) funds the two projects with an amount of 8.5 million euros in five years.

The EnerKey project - Energy as a key element (www.enerkey.info)
Energy is a key element for designing a sustainable life in urban areas like the City Region of Gauteng with more than ten millions of inhabitants. Therefore the “EnerKey” project (Energy as a Key-Element), coordinated by the Institute of Energy Economics and the Rational Use of Energy (IER, University of Stuttgart) develops strategies and approaches for a reaching sustainable and climate compatible energy supply structures. “This includes energy efficient settlement patterns as well as the environmental friendly supply with energy for the growing demand on energy” states Prof. Alfred Voss, director of the IER. He adds: “Regarding the current energy crises, the neglected construction of power plants as well as the uncontrolled growth of settlements, priority should be given to improving the energy efficiency”. Moreover, efficient technologies, such as power plants, particularly also solar energy for hot water supply, are analysed. The scientists of IER will identify and analyse instruments and approaches for planning and evaluating such technologies together with their project partners. For the urban areas in South Africa poverty reduction is a central challenge. Therefore the projects will identify cost-efficient power supply technologies for “informal settlements” in order to avoid negative impacts on health and fire hazards due to the utilisation of paraffin. By presenting local demonstration projects a praxis oriented concept is applied. Besides the scientists of the University of Stuttgart, experts from the communal administration of the city of Stuttgart and the three big cities of the Gauteng-region, further scientists of other institutions and from enterprises and are taking part. “A well established network between both countries and different stakeholders was set up during a two years lasting pre-project-phase” reports the project manager Dr. Ludger Eltrop from IER. In addition to the financial promotion of the BMBF, the newly found South African National Research Institute (SANERI), the National Research Foundation and the University of Johannesburg supports the South African partners with five million Rand. This shows the interest and active integration of the South African partners into the project. In the framework of the BMBF research program “Energy and climate efficient structures in urban growth areas” the project is supported with four million euros, thereof 1.3 millions for the IER. “The creation of sustainable energy supply structures in urban areas is of interest not only for developing countries but also for Germany” mentions Prof. Alfred Voss. This goes along with the current tenders for further projects by the federal ministry of education and research (BMBF) for “energy efficient cities”. “These targets can only be fulfilled if experts from academia and municipalities will work together in the long term” argues Joachim von Zimmermann, head of the communal department of environmental protection of the city of Stuttgart.
Resource instead of Waste
Highly populated megacities in developing countries are characterized by a lack of adequate infrastructure for the collection, treatment and valorisation of wastes, and by deficient administrative and regulatory conditions to ensure a sustainable management of refuse. As a result, unsanitary conditions for the population proliferate, resources are lost, and greenhouse gases are emitted without control into the atmosphere. Professor Martin Kranert, from the Institute of Sanitary Engineering, Water Quality and Solid Waste Management (ISWA) of the Universität Stuttgart, postulates: “Sustainable valorisation of wastes leads to the conservation of resources, generates income for the population, and decreases the emissions of greenhouse gases and other substances.” This thesis will be explored in the city of Addis Ababa, Ethiopia, within the project “IGNIS - Income Generation & Climate Protection through Valorisation of Municipal Solid Wastes in a Sustainable Way in Emerging Megacities”. The project, which is funded within the programme “Energy and climate efficient structures in urban growth centres” by the German Federal Ministry of Education and Research with a total budget of 4.5 Million Euros, shall contribute to the solution of the waste problematic, including the associated greenhouse gas emissions, in emerging megacities.

Together with the Chair of Waste Management and Emissions (ISWA), the Institut for Future Energy Systems (IZES), the Federal Institute for Occupational Safety and Health (FIOSH), the Environmental Development Action in the Third World (ENDA), the Addis Ababa University (Civil Engineering Department and Regional and Local Development Studies Department) and the Addis Ababa Environmental Protection Agency (EPA) form an interdisciplinary consortium, which will be responsible for the project execution. The Association for the Promotion of Socially and Environmentally Appropriate Technology (AT-Verband) is in charge of the project’s coordination. The project partners will provide for the inclusion of local stakeholders, the implementation of pilot projects, assessment of the environmental, occupational health, social and economic impacts of the waste management measures, as well as for the training of local stakeholders and for public awareness campaigns.

The IGNIS project involves in its first stage the collection of geographic, waste and emission related data in order to establish a coherent and reliable information basis for Addis Ababa. In a following stage, decentralized plants will be setup and operated at pilot scale in Ethiopia’s capital, including plants for biowaste composting, biogasification, recycling, and improved waste collection. The Chair of Waste Management and Emissions will carry out the scientific accompaniment and evaluation of the pilot projects. One of the main tasks of the Chair of Waste Management and Emissions will be to develop mathematical models of each pilot plant based on Material Flow Analyses (MFAs), and to integrate them in a simulation programme and decision support system. Different waste management scenarios, that describe possible future developments of the waste management structure in Addis Ababa, will be simulated with the help of this programme, and their impacts on resource conservation, emissions, climate change, occupational health, and socioeconomic conditions will be assessed. "Apart from improving the quality of life of the inhabitants of the Ethiopian megacity, important insights will be gained, which will enable developing countries to reorient their waste management systems in a sustainable manner, and thereby contributing to resource conservation and climate protection“ points out Prof. Martin Kranert. It is expected that the simulation and decision support system will be applied in the future in other Megacities worldwide. Dr. Manfred Krieck from the Stuttgart Waste Management Enterprise (AWS), which supports the project, adds “we would like to contribute to the project with our practical experience in the operation of waste management systems, as well as the knowhow we have acquired through qualification of administrative personnel Stuttgart’s partner cities.”

Further Information
Dr. Ludger Eltrop
University of Stuttgart
Institute of Energy Economics and the Rational Use of Energy
+49-(0)711/685-87816, mobil: +49 (0)160/78 40 682
e-mail: le@ier.uni-stuttgart.de
www.ier.uni-stuttgart.de
Prof. Dr.-Ing. Martin Kranert
University of Stuttgart
Chair of Waste Management and Emissions
Institute of Sanitary Engineering, Water Quality and Solid Waste Management
Tel. +49 (0)711/685-65500
e-mail: martin.kranert@iswa.uni-stuttgart.de
www.iswa.uni-stuttgart.de

Ursula Zitzler | alfa
Further information:
http://www.uni-stuttgart.de
http://www.ier.uni-stuttgart.de
http://www.iswa.uni-stuttgart.de

More articles from Ecology, The Environment and Conservation:

nachricht Bioplastics from Waste Fats
23.09.2019 | Technische Universität Berlin

nachricht Fungicides as an underestimated hazard for freshwater organisms
17.09.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>