Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuel Production: a Drink-Or-Drive Issue?

01.05.2009
Federal requirements to increase the production of ethanol has developed into a “drink-or-drive issue” in the Midwest as a result of biofuel production’s impact on water supplies and water quality, says an environmental engineering researcher at Missouri University of Science and Technology in the latest issue of the journal Environmental Science & Technology.

In an analysis of the water required to produce ethanol from various crops, Dr. Joel G. Burken, a professor of environmental engineering at Missouri S&T, and colleagues from Rice University and Clarkson University find that ethanol could become a costly proposition in terms of “gallons per mile” and other water quality issues.

They describe the Midwest’s water needs and impacts as the ’water footprint’ in their cover feature for the May 1 issue of Environmental Science & Technology.

The researchers report that ethanol derived from corn grown in Nebraska, for example, would require 50 gallons of water per mile driven, when all the water needed in irrigation of crops and processing into ethanol is considered. Fuel derived from irrigated sorghum grown in that state would require even more water to produce – as much as 115 gallons per mile.

Moreover, increasing production of biofuels from row crops will likely result in more water pollution due to soil erosion and the increased use of pesticides to grow enough crops to meet federal mandates for more ethanol, the researchers say. The mandated production using the current technology has driven the use of ethanol production from corn and biodiesel from soybeans as these are the currently available technologies.

In their Environmental Science & Technology article, the researchers suggest that federal regulators take a closer look at how a push for bioenergy will affect water resources.

“Developing a sustainable national biofuels program requires careful consideration of logistical concerns … and of unintended environmental impacts,” write Burken and his co-authors, Rosa Dominguez-Faus and Dr. Pedro J. Alvarez of Rice University and Dr. Susan E. Powers of Clarkson University, in their article, “The Water Footprint of Biofuels: A Drink or Drive Issue?” The article is online at http://pubs.acs.org/doi/abs/10.1021/es802162x.

To arrive at their gallons-per-mile figures, the researchers first looked at the amount of water required to produce a single gallon of ethanol. In Nebraska, for example, it takes 800 gallons of water – from crop irrigation through final processing into ethanol – to create a single gallon of the corn-derived transportation fuel. Divide that by an average mileage of 16 miles per gallon (or two-thirds the average for gasoline-powered cars, a standard average for ethanol-powered vehicles), and the result is 50 gallons of water per mile.

While previous studies have examined biofuel production’s impact on air quality, land use and net energy value, “the effect of increased biofuel production on water security has not been subjected to the same scrutiny,” the researchers write. The main focus of previous studies looked at environmental trade-offs to fossil-fuel usage and not other aspects of biofuel production, according to the researchers.

“The overall water footprint associated with biofuels must recognize the impact of increased agricultural activity on water quality as well as water consumption,” they write. With the federal Energy Independence and Security Act (EISA) of 2007 calling for a dramatic ramp-up in ethanol production by 2015, Burken and his colleagues foresee additional water quality problems due to “increased agricultural activity such as tilling more land for row crops and higher fertilizer and agrichemical application.”

The Energy Independence and Security Act requires the United States to produce 15 billion gallons of corn-derived ethanol annually by 2015 and 16 billion gallons of fuel from cellulosic crops, such as switchgrass, by 2016. The researchers note that 44 percent of all the corn produced in the United States from 2007 would be required for ethanol production to meet the 2015 goal.

“The decision to mandate ethanol production may look great initially as we all like the concept of biofuels,” Burken says, “but really our difficult energy position and reliance on foreign oil is the result of our lack of an energy policy and investing a decade ago in biofuel technologies. Biofuel production is part of our energy future, but it needs to be considered as part of a portfolio of energy sources and technologies.”

While it’s unlikely the EISA will be repealed, Burken hopes lawmakers and regulators at the state and federal levels “consider a life-cycle analysis before implementing future mandates” for energy sources. Lawmakers and regulators need to consider all of the economic and environmental trade-offs – not just reducing greenhouse gas emissions, for instance. “Otherwise, we may be thinking we’re addressing one environmental issue while in fact sacrificing another,” Burken says.

Burken and his colleagues suggest that “drought-tolerant, high-yield plants grown on little irrigation water” would have less impact on water resources. One such crop, Burken says, is miscanthus, a fast-growing perennial grass that “grows so dense you can’t walk through it and grows about 9-10 feet a year.” Currently, however, no technology is available to convert the cellulosic biomass and produce it in large quantities. Once alternative biofuel production crops and processes are developed, selecting the best crop for individual settings will help to optimize biofuel production and minimize the environmental impacts of the production, Burken says.

“Developing the crops and distribution of crop production took about 100 years to get to where it was a few years ago,” Burken says. “Redeveloping this production with the goal of biofuel production will take time and effort of farmers and engineers. While miscanthus may or may not be a part of our biofuels future, we at least need a little time and investment to develop the best solutions for our future.”

Quoting Texas oilman T. Boone Pickens, whom Burken met on April 22 during the Missouri Energy Summit, Burken says, “The best time to plant a tree was 20 years ago, but the next best time if you didn’t is today.”

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>