Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind turbines that learn like humans

28.03.2012
Depending on the weather, wind turbines can face whispering breezes or gale-force gusts. Such variable conditions make extracting the maximum power from the turbines a tricky control problem, but a collaboration of Chinese researchers may have found a novel solution in human-inspired learning models.

Most turbines are designed to produce maximum allowable power once winds reach a certain speed, called the rated speed. In winds above or below the rated speed, control systems can make changes to the turbine system, such as modifying the angle of the blades or the electromagnetic torque of the generator. These changes help keep the power efficiency high in low winds and protect the turbine from damage in high winds.

Many control systems rely on complex and computationally expensive models of the turbine's behavior, but the Chinese group decided to experiment with a different approach. The researchers developed a biologically inspired control system, described in the American Institute of Physics' Journal of Renewable and Sustainable Energy, that used memory of past control experiences and their outcomes to generate new actions. In simulations, the controller showed initially poor results, but quickly learned how to improve, matching the performance of a more traditional control system overall.

The memory-based system is attractive because of its simplicity, the researchers write, concluding that "the human-memory-based method holds great promise for enhancing the efficiency of wind power conversion."

Article: "A Bio-inspired Approach to Enhancing Wind Power Conversion" is published in the Journal of Renewable and Sustainable Energy.

Authors: YongDuan Song (1, 2), WenChuan Cai (2), Peng Li, (2), and YongSheng Hu (3).

(1) School of Automation, Chongqing University, China
(2) School of Electronic and Information Engineering, Beijing Jiaotong University, China

(3) China Datang Corp. Renewable Power Co. Ltd., Beijing, China

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht New Record: PLQE of 70.3% in lead-free halide double perovskites
22.07.2019 | Science China Press

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>