Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny dancers: Can ballet bugs help us build better robots?

21.10.2015

High-speed cameras capture spider crickets' aerial acrobatics

When it's time to design new robots, sometimes the best inspiration can come from Mother Nature. Take, for example, her creepy, but incredibly athletic spider crickets.


If spider crickets were as large as humans, how far could they jump?

Credit: Royce Faddis/Johns Hopkins University

Johns Hopkins engineering students and their professor have spent more than eight months unraveling the hopping skills, airborne antics and safe-landing patterns of these pesky insects that commonly lurk in the dark corners of damp basements.

The team, which hopes to pave the way for a new generation of small but skillful jumping robots, will present its findings Nov. 23 during a poster session in Boston at the 68th annual meeting of the American Physical Society's Division of Fluid Dynamics.

Caption: Undergraduate researcher Emily Palmer and one of her spider cricket subjects. (Credit: Will Kirk/Johns Hopkins University)

The Johns Hopkins team members believe non-human creatures may be the best models in designing mechanical helpers to carry out certain important tasks. Figuring out how critters move, they say, could lead to planetary rovers that crawl like caterpillars or winged drones that hover like hummingbirds.

So what design tips did the researchers manage to glean from these spindly six-legged bugs?

For one thing, the Johns Hopkins researchers were able to use high-speed video cameras to collect tantalizing clues about how these tiny wingless creatures can somehow leap a distance equal to about 60 times their body length. That's a feat far beyond what any human track star could accomplish. An adult human who wanted to replicate the cricket's leap would have to jump 300 feet or more--roughly the length of a football field. And, most times, spider crickets manage to land safely on their feet. How, the researchers wanted to know, can these tiny bugs accomplish this?

"Because they don't have wings, the main things they use during their 'flight' to stabilize their posture is their limbs," said Emily Palmer, a sophomore mechanical engineering major in the university's Whiting School of Engineering who is doing much of the testing. "We're looking at the way the spider crickets move their bodies and move their limbs to stabilize their posture during a jump."

And why would such knowledge be useful?

"Ultimately, the application would be in really tiny robots," said Palmer, who is from Exeter, N.H. Deploying tiny high-jumping robots to travel over rugged, uneven ground, she said, would utilize a more efficient and probably less expensive form of locomotion, compared to flying robots or humans on foot.

To get a clear, close-up view of the crickets' limber limbs in action, the team's three video cameras each snap 400 frames per second. Then, by slowing down the finished footage, the researchers see precisely how each spindly insect leg contributed to the amazing leaps and landings.

Rajat Mittal, the Johns Hopkins mechanical engineering professor who is supervising the research, was startled to see that, in slow-motion, the crickets' limb movements bore an uncanny resemblance to classical dance.

"These videos have actually been quite eye-opening," he said, "because it's only when you slow these critters down that you really start to see the beauty and the intricacy of their movement. The analogy that comes to mind is of a ballerina performing a ballet. It's a very beautiful, controlled, intricate motion."

But Mittal and his students found that beneath such artistic movements lie some serious lessons in aerodynamics. The slow-motion playback confirmed that during the "flight" segment of their jumps, the crickets carefully use their limbs and even perhaps their antennae to stabilize their posture and prepare for a safe landing. The crickets seek to land on their feet, the researchers said, so that they can quickly be prepared to leap again to escape any predators that are waiting to pounce.

Some of the video footage yielded surprises. The team discovered that as the crickets soared upward during the early part of their jumps, the bugs streamlined their bodies like a projectile to maximize the distance they would travel. "They really are masters of aerodynamics," Mittal said.

Captured by the lab's cameras, this aerial mastery was transferred to computers to create detailed three-dimensional models depicting how each insect's body parts move during a leap and a touchdown. Mittal suggested that a new generation of jumping micro-robots modeled on these crickets might someday be able to help look for victims after a powerful earthquake or carry out other tasks without putting humans searchers at risk.

###

Other participants in this research project were Noah Cowan, a Johns Hopkins associate professor of mechanical engineering; David Gorman and Catarina Neves, both Johns Hopkins undergraduate seniors majoring in mechanical engineering; and Nicolas Deshler, a high school intern who is currently in his senior year at Washington International School in Washington, D.C. Deshler's participation was supported by the Research Experience for Undergraduates Program, funded by the National Science Foundation and administered at Johns Hopkins by the university's Institute for NanoBioTechnology.

Video footage, still photos and an info graphic are available; contact Phil Sneiderman.

Media Contact

Phil Sneiderman
prs@jhu.edu
443-997-9907

 @JohnsHopkins

http://www.jhu.edu 

Phil Sneiderman | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>