Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise superconductor

02.07.2013
Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance.

This phenomenon can only be found in certain materials under specific low-temperature and high-pressure conditions. Research to create superconductors at higher temperatures has been ongoing for two decades with the promise of significant impact on electrical transmission.

New research from a team led by Choong-Shik Yoo at Washington State University—and including Carnegie's Viktor Struzhkin, Takaki Muramatsu, and Stanislav Sinogeikin—found unexpected superconductivity that could help scientists better understand the structural changes that create this rare phenomenon. Their work is published the week of July 1 by the Proceedings of the National Academy of Sciences.

The team found superconductivity in the solid form of a compound called carbon disulfide, CS2, which is sometimes used in liquid form as a chemical solvent or insecticide. They found that disulfide enters a superconducting state at about -449 degrees Fahrenheit (6.2 Kelvin) at pressures ranging from about 493,000 to about 1,698,000 times normal atmospheric pressure (50 to 172 gigapascals).

"What makes this discovery special is that it seems counter to the understanding of how superconductivity normally works," Yoo said.

Usually, but not always, superconductivity is present in highly ordered molecular structures. But in carbon disulfide, superconductivity arises from a highly disordered state, which is rare. Even more surprising, this disordered structure is preceded by a magnetically ordered state, which undergoes a structural change into the disorganized configuration when superconducting starts.

"These results show the interplay between superconductivity, magnetism and structural disorder," Struzhkin said. "We are already at work searching for other highly conducting states in similar molecular systems in close collaboration with Professor Choong-Shik Yoo's team."

The rest of the team was lead author Ranga Dias, and co-author Minseob Kim also of Washington State University; and co-authors Takahiro Matsuoka and Yasuo Ohishi of the Japan Synchrotron Radiation Research Institute.

This work was supported by the National Science Foundation-Division of Materials Research, the Defense Threat Reduction Agency, the Deep Carbon Observatory - Extreme Physics and Chemistry, and the Department of Energy/Basic Energy Science.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Viktor Struzhkin | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Power and Electrical Engineering:

nachricht How electric heating could save CO2 emissions
17.12.2018 | Technische Universität München

nachricht Data use draining your battery? Tiny device to speed up memory while also saving power
14.12.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>