Beyond Silicon's Elemental Logic

Almost since the first silicon MOSFET was invented, engineers have sought to construct versions using gallium arsenide or other III-V semiconductors, which would be able to operate at considerably higher speeds.

The main roadblock has been in finding a suitable material to use as a gate insulator. But in recent years, considerable progress has been made.

One technique uses molecular-beam epitaxy to deposit a gallium oxide-gadolinium oxide insulator on a III-V substrate. Another successful method is to deposit an aluminum oxide gate insulator using atomic-layer deposition, which is less technically demanding than molecular-beam epitaxy.

These and other approaches are bringing the day closer when engineers will be able to integrate millions of III-V MOSFETs into microprocessors or other digital ICs. By combining these transistors (which use electrons as charge carriers) with others made of germanium (which use “holes” as charge carriers), chip manufacturers should be able to build CMOS ICs that operate several times faster than those built from silicon.

Media Contact

David Schneider Newswise Science News

More Information:

http://www.ieee.org.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors