Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Work to Convert Sunlight to Cheaper Energy

22.08.2008
New materials to make devices that convert to cheaper, more efficient electricity is at the heart of research by scientists at South Dakota State University. New technology relies on carbon-based polymers and molecules to find new materials & novel structures to make photovoltaic devices that are cost efficient.

Scientists work to convert sunlight to cheaper electricity at South Dakota State University. Research scientists are working with new materials that can make devices used for converting sunlight to electricity cheaper and more efficiently.

Assistant professor Qiquan Qiao in SDSU’s Department of Electrical Engineering and Computer Science said so-called organic photovoltaics, or OPVs, are less expensive to produce than traditional devices for harvesting solar energy.

Qiao and his SDSU colleagues also are working on organic light-emitting diodes, or OLEDs.

The new technology is sometimes referred to as “molecular electronics” or “organic electronics” — organic because it relies on carbon-based polymers and molecules as semiconductors rather than inorganic semiconductors such as silicon.

“Right now the challenge for photovoltaics is to make the technology less expensive,” Qiao said.

“Therefore, the objective is find new materials and novel device structures for cost-effective photovoltaic devices.

“The beauty of organic photovoltaics and organic LEDs is low cost and flexibility,” the researcher continued.

“These devices can be fabricated by inexpensive, solution-based processing techniques similar to painting or printing.

“The ease of production brings costs down, while the mechanical flexibility of the materials opens up a wide range of applications,” Qiao concluded.

Organic photovoltaics and organic LEDs are made up of thin films of semiconducting organic compounds that can absorb photons of solar energy.

Typically an organic polymer, or a long, flexible chain of carbon-based material, is used as a substrate on which semiconducting materials are applied as a solution using a technique similar to inkjet printing.

“The research at SDSU is focused on new materials with variable band gaps,” Qiao said.

“The band gap determines how much solar energy the photovoltaic device can absorb and convert into electricity.”

Qiao explained that visible sunlight contains only about 50 percent of the total solar energy. That means the sun is giving off just as much non-visible energy as visible energy.

“We’re working on synthesizing novel polymers with variable band gaps, including high, medium and low-band gap varieties, to absorb the full spectrum of sunlight. By this we can double the light harvesting or absorption,” Qiao said.

SDSU’s scientists plan to use the variable band gap polymers to build multi-junction polymer solar cells or photovoltaics.

These devices use multiple layers of polymer/fullerene films that are tuned to absorb different spectral regions of solar energy.

Ideally, photons that are not absorbed by the first film layer pass through to be absorbed by the following layers.

The devices can harvest photons from ultraviolet to visible to infrared in order to efficiently convert the full spectrum of solar energy to electricity.

SDSU scientists also work with organic light-emitting diodes focusing on developing novel materials and devices for full color displays.

“We are working to develop these new light-emitting and efficient, charge-transporting materials to improve the light-emitting efficiency of full color displays,” Qiao said.

Currently, LED technology is used mainly for signage displays. But in the future, as OLEDs become less expensive and more efficient, they may be used for residential lighting, for example.

The new technology will make it easy to insert lights into walls or ceilings. But instead of light bulbs, the lighting apparatus of the future may look more like a poster, Qiao said.

Qiao and his colleagues are funded in part by SDSU’s electrical engineering Ph.D. program and by National Science Foundation and South Dakota EPSCoR, the Experimental Program to Stimulate Competitive Research.

In addition Qiao is one of about 40 faculty members from SDSU, the South Dakota School of Mines and Technology and the University of South Dakota who have come together to form Photo Active Nanoscale Systems (PANS).

The primary purpose is developing photovoltaics, or devices that will directly convert light to electricity.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Power and Electrical Engineering:

nachricht Hot electrons harvested without tricks
18.11.2019 | University of Groningen

nachricht New laser opens up large, underused region of the electromagnetic spectrum
15.11.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

How LISA pathfinder detected dozens of 'comet crumbs'

19.11.2019 | Physics and Astronomy

Trash talk hurts, even when it comes from a robot

19.11.2019 | Social Sciences

The evolution and genomic basis of beetle diversity

19.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>