Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Work to Convert Sunlight to Cheaper Energy

22.08.2008
New materials to make devices that convert to cheaper, more efficient electricity is at the heart of research by scientists at South Dakota State University. New technology relies on carbon-based polymers and molecules to find new materials & novel structures to make photovoltaic devices that are cost efficient.

Scientists work to convert sunlight to cheaper electricity at South Dakota State University. Research scientists are working with new materials that can make devices used for converting sunlight to electricity cheaper and more efficiently.

Assistant professor Qiquan Qiao in SDSU’s Department of Electrical Engineering and Computer Science said so-called organic photovoltaics, or OPVs, are less expensive to produce than traditional devices for harvesting solar energy.

Qiao and his SDSU colleagues also are working on organic light-emitting diodes, or OLEDs.

The new technology is sometimes referred to as “molecular electronics” or “organic electronics” — organic because it relies on carbon-based polymers and molecules as semiconductors rather than inorganic semiconductors such as silicon.

“Right now the challenge for photovoltaics is to make the technology less expensive,” Qiao said.

“Therefore, the objective is find new materials and novel device structures for cost-effective photovoltaic devices.

“The beauty of organic photovoltaics and organic LEDs is low cost and flexibility,” the researcher continued.

“These devices can be fabricated by inexpensive, solution-based processing techniques similar to painting or printing.

“The ease of production brings costs down, while the mechanical flexibility of the materials opens up a wide range of applications,” Qiao concluded.

Organic photovoltaics and organic LEDs are made up of thin films of semiconducting organic compounds that can absorb photons of solar energy.

Typically an organic polymer, or a long, flexible chain of carbon-based material, is used as a substrate on which semiconducting materials are applied as a solution using a technique similar to inkjet printing.

“The research at SDSU is focused on new materials with variable band gaps,” Qiao said.

“The band gap determines how much solar energy the photovoltaic device can absorb and convert into electricity.”

Qiao explained that visible sunlight contains only about 50 percent of the total solar energy. That means the sun is giving off just as much non-visible energy as visible energy.

“We’re working on synthesizing novel polymers with variable band gaps, including high, medium and low-band gap varieties, to absorb the full spectrum of sunlight. By this we can double the light harvesting or absorption,” Qiao said.

SDSU’s scientists plan to use the variable band gap polymers to build multi-junction polymer solar cells or photovoltaics.

These devices use multiple layers of polymer/fullerene films that are tuned to absorb different spectral regions of solar energy.

Ideally, photons that are not absorbed by the first film layer pass through to be absorbed by the following layers.

The devices can harvest photons from ultraviolet to visible to infrared in order to efficiently convert the full spectrum of solar energy to electricity.

SDSU scientists also work with organic light-emitting diodes focusing on developing novel materials and devices for full color displays.

“We are working to develop these new light-emitting and efficient, charge-transporting materials to improve the light-emitting efficiency of full color displays,” Qiao said.

Currently, LED technology is used mainly for signage displays. But in the future, as OLEDs become less expensive and more efficient, they may be used for residential lighting, for example.

The new technology will make it easy to insert lights into walls or ceilings. But instead of light bulbs, the lighting apparatus of the future may look more like a poster, Qiao said.

Qiao and his colleagues are funded in part by SDSU’s electrical engineering Ph.D. program and by National Science Foundation and South Dakota EPSCoR, the Experimental Program to Stimulate Competitive Research.

In addition Qiao is one of about 40 faculty members from SDSU, the South Dakota School of Mines and Technology and the University of South Dakota who have come together to form Photo Active Nanoscale Systems (PANS).

The primary purpose is developing photovoltaics, or devices that will directly convert light to electricity.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Power and Electrical Engineering:

nachricht New safer, inexpensive way to propel small satellites
16.07.2019 | Purdue University

nachricht No more trial-and-error when choosing an electrolyte for metal-air batteries
15.07.2019 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>