Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance motorised wheelchairs

04.10.2007
Tekniker-Ik4, with the help of the Benevolent Fund of the Kutxa Bank, has created the NOA prototype of a wheelchair with state-of-the-art specifications.

From the very, first special emphasis has been placed on the final result of the project incorporating innovative functions and adapting to the real needs of the end users. To this end, special attention has been given to the initial phase of the definition of requirements, involving an exhaustive analysis of functions provided by the motorised wheelchairs and taking into account suggestions by users’ groups such Gene, Elkartu and Bidaideak and other persons affected by various disabilities. In this way, the “living in a wheelchair” initiative was launched which has enabled a number of researchers involved in the project to “feel” the deficiencies of current wheelchairs.

In the product development phase to date, it was clearly understood that, with the results obtained, the posterior manufacturing and marketing phases would have to be viable. In fact NOA is now ready to continue making progress in this vein.

NOA is the prototype of a comprehensive, modular and adaptable motorised wheelchair that incorporates important innovations from a mecatronics perspective and integrates advanced functions based on new technologies.

- Comprehensive, undertaking the design and development of all the mechanical elements of the wheelchair, the wheels, the motors and the batteries, except the seat (a multipurpose interface has been incorporated for mounting different types of seats according to the needs and preferences of users).

- Modular, combining various functions to facilitate its adaptation to the different problems and needs of users. Each final configuration may be designed to include only the devices and modules needed to operate the desired functions without this affecting the overall operation of the wheelchair.

- Adaptable, this design enabling the gradual incorporation of new functions.

NOA is amongst the state-of-the-art range of wheelchairs with additional functions which go beyond the mere transport of users and aimed at facilitating the activities of their daily lives.

One of the main ideas proposed is that of wheelchair be an interior-exterior one, overcoming the contradictory specifications to date whereby, on the one hand, a wheelchair is small sized (width-length) in order to pass through doorways, travel in lifts or have a small turning circle, etc, and, on the other, have good stability, a good grip on the floor and a certain ability to overcome obstacles (mainly edges), when used outside. In general, users of motorised wheelchairs also have a manual wheelchair for use in interiors, given its greater manoeuvrability. The characteristics of the new wheelchair enable users to operate a single machine in all the ambits of their daily lives.

The design challenge was met by developing an extension mechanism that enables the equipping of the NOA with variable geometry as a function of the needs of the moment, providing high manoeuvrability in its compact position in interiors and small spaces (smaller turning circle for use in lifts and restricted spaces, less width for negotiating narrow doorways and so on) and maximum stability in its extended position for use outside (greater width and greater separation between front and rear axles, while maintaining the overall length of the wheelchair).

NOA also incorporates vertical seat movement, both above and below the driving position, a feature not available in current market models. The vertical positioning of the seat above the driving position enables the users to reach high objects, gain access to counters, have conversations at different heights, etc. Being able to lower oneself from the usual driving position enables access to standard tables and desks, eat with a more suitable posture, pick objects up from the floor, etc. Moreover, the sum of both these movements enables lateral transferences at different heights to be carried out, thus reducing both the physical effort required by users or their helpers or carers as well as the need for additional devices such as transfer cranes.

NOA has the same adjustable directional tilting specification so that the user can change position without discomfort or rigidity in the joints, as well as avoid body sores, due to the fact that the points of support for the body can be changed.

The technology developed enables the integration of a single device to operate both the vertical movement of the seat as well as its directional tilting. NOA also incorporates another series of function, based on new technologies, aimed at increasing safety (automatic calls to emergency services and/or to family members for detection of falls by the user or the wheelchair overturning, detection of obstacles and anti-collision systems), manoeuvrability (semi-automatic help in the manoeuvre for negotiating edges) and facilitating control (remote control and pre-programmed itineraries).

Patents

Two patents have been taken out to protect the innovations incorporated into the design of this new wheelchair, specifically referring to the mechanisms of extension and to the lifting/directional tilting.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?hizk=I&Berri_Kod=1442

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>