Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding up renewable energy

15.08.2007
Do the benefits of renewable energy sources stack up?

Do the overall efficiencies of renewable energy sources, such as wind, solar, and geothermal add up in terms of their complete life cycle from materials sourcing, manufacture, running, and decommissioning" Researchers in Greece have carried out a life cycle assessment to find the answer.

Increasing energy consumption and a growing world population implies shrinking reserves of fossil fuels. While the use of fossil fuels brings with it the problem of carbon dioxide emissions and climate change. Our continued dependence on fossil fuels coupled with the pressing global issue of climate change has pushed the concept of renewable energy sources to the top of the agenda.

In looking for alternative energy supplies, there is more to simply adding up the outputs, according to Christopher Koroneos and Yanni Koroneos of the Laboratory of Heat Transfer and Environmental Engineering, at the Aristotle University of Thessaloniki, Greece. They argue that a whole life cycle assessment of any environmentally friendly energy supply must be carried out to ensure its green credentials are valid.

Writing in Inderscience's International Journal of Global Energy Issues, the researchers point out that land use and materials employed are just two aspects of renewable energy development that can have an adverse impact on the otherwise positive environmental picture.

There are three viable renewable energy resources, say the researchers - solar energy, wind power and geothermal energy. They have applied the techniques of life cycle assessment (LCA) to each in order to determine the total environmental impact and to compare this with the effects of equivalent energy release from fossil fuels.

The LCA approach allows an assessment to be made of the flow of material and energy used in the construction, operation and ultimate decommissioning of a renewable energy supply. It also takes into account the manufacturing of components, the possible extraction and supply of fuels as well as waste generated in these processes.

The researchers demonstrate that some renewable energy systems based on wind power and geothermal energy do have valid green credentials in electricity production. The efficiency of these systems is comparable over the complete life cycle than the equivalent fossil fuel system. However, the conversion of solar energy to electricity using photovoltaic solar cells is less efficient in terms of materials production, running, and recycling than non-renewable energy. However, economies of scale come into play with solar power and a large enough area of solar cells would outstrip the fossil fuel system. The team also points out that the life cycle pollution of solar systems is much, much lower than any conventional system although thermodynamic efficiency is lower.

"A significant advantage of the use of renewable energy systems," say the researchers, "is that they are environmentally friendly because overall they result in lower dangerous pollutant emissions, this and one other major factor, they are essentially inexhaustible."

Christopher Koroneos | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht New creepy, crawly search and rescue robot developed at Ben-Gurion U
19.07.2018 | American Associates, Ben-Gurion University of the Negev

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>