Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-Based Light Source Promises Improvements in Food Inspection

19.03.2007
A new light source based on fiber-optic technology promises to improve the inspection of food, produce, paper, currency, recyclables and other products.

New research revealing this technology will be presented at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), being held March 25-29 in Anaheim, Calif.

Currently, industrial processes for inspecting foodstuffs and other items often use "line-scan" cameras, which record images of objects one line at a time, just as fax machines scan documents on a line-by-line basis. Rapid electronic processors then detect whether there are any problems with the items and instruct mechanical actuators (such as air jets) to separate out unsatisfactory items. The problem is current line-scan cameras lack ideal light sources to image objects properly.

Now, Princeton Lightwave of Cranbury, N.J. and OFS Labs (a Somerset, N.J.-based division of Furukawa Electric) have introduced a fiber-optics-based solution, which they will describe in their OFC/NFOEC paper. In their design, a bright light source such as a laser sends light through an optical fiber. Along the length of the fiber is an ultraviolet-light-treated region called a "fiber grating." The grating deflects the light so that it exits perpendicularly to the length of the fiber as a long, expanding rectangle of light. This optical rectangle is then collimated by a cylindrical lens, such that the rectangle illuminates objects of interest at various distances from the source. The bright rectangle allows line scan cameras to sort products at higher speeds with improved accuracy.

The new fiber-based light source combines all the ideal features necessary for accurate and efficient scanning: uniform, intense illumination over a rectangular region; a directional beam that avoids wasting unused light by only illuminating the rectangle; and a "cool" source that does not heat up the objects to be imaged. Currently employed light sources such as tungsten halogen lamps or arrays of light-emitting diodes lack at least one of these features.

According to the researchers, this fiber-based device can be customized for a specific inspection application within four to six weeks, then manufactured for that application in 16 to 20 weeks.

Meeting Paper: G.E. Carver, K.S. Feder, P.S. Westbrook, "FBG Based Distributed Lighting for Sensing Applications," Presentation OThP1, Thursday, March 29, 3 p.m. PDT; meeting paper available upon request from Colleen Morrison, cmorri@osa.org.

ABOUT OFC/NFOEC
Since 1985, the Optical Fiber Communication Conference and Exposition (OFC) has provided an annual backdrop for the optical communications field to network and share research and innovations. In 2004, OFC joined forces with the National Fiber Optic Engineers Conference (NFOEC) creating the largest and most comprehensive international event for optical communications. By combining an exposition of more than 600 companies with a unique program of peer-reviewed technical programming and special focused educational sessions, OFC/NFOEC provides an unparalleled opportunity, reaching every audience from service providers to optical equipment manufacturers and beyond.

OFC/NFOEC, www.ofcnfoec.org, is managed by the Optical Society of America (OSA), a member society of the American Institute of Physics, and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the Institute of Electrical and Electronics Engineers/Lasers and Electro-Optics Society (IEEE/LEOS). Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>