Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Power Supercapacitors From Carbon Nanotubes

16.02.2005


Supercapacitors that can deliver a strong surge of electrical power could be manufactured from carbon nanotubes using a technique developed by researchers at UC Davis.



Supercapacitors are electrical storage devices that can deliver a huge amount of energy in a short time. Hybrid-electric and fuel-cell powered vehicles need such a surge of energy to start, more than can be provided by regular batteries. Supercapacitors are also needed in a wide range of electronic and engineering applications, wherever a large, rapid pulse of energy is required.

Ning Pan, a professor of textiles in the Department of Biological and Agricultural Engineering and the Nanomaterials in the Environment, Agriculture and Technology (NEAT) center at UC Davis, postdoctoral researcher Chunsheng Du and Jeff Yeh of Mytitek Inc. of Davis prepared suspensions of carbon nanotubes -- tiny rolled-up cylinders of carbon just a few atoms across. They developed a method to deposit the nanotubes on nickel foil so that the nanotubes were aligned and packed closely together.


Conventional, or "Faraday" capacitors, store electrical charges between a series of interleaved conducting plates. Because of their small size, the nanotubes provide a huge surface area on which to store and release energy, Pan said.

The new devices can produce a power density of 30 kilowatts per kilogram (kW/kg), compared with 4 kW/kg for the most advanced devices currently available commercially, Pan said. Other researchers have described laboratory supercapacitors capable of up to 20 kW/kg, he said.

The work is published in the Feb. 1 issue of the journal Nanotechnology.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu
http://www.iop.org/EJ/journal/Nano

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>