Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper wastewater-fueled device produces more electricity

16.06.2004


Penn State environmental engineers have removed and replaced one of the most expensive parts of their prototype microbial fuel cell and the device now costs two-thirds less and produces nearly six times more electricity from domestic wastewater.



Earlier this year, the Penn State team was the first to develop a microbial fuel cell (MFC) that can generate electricity while simultaneously cleaning domestic wastewater skimmed from the settling pond of a sewage treatment plant. Now, they’ve shown that by modifying their original MFC to make it cheaper, they can also boost electricity production from about 26 milliwatts per square meter to about 146 milliwatts per square meter.

Dr. Bruce Logan, the Kappe professor of environmental engineering, directs the project. He says, "The new design has moved the technology closer to our goal of 1000 milliwatts per square meter."


He notes that they have hooked up an MFC built on the Penn State design principles to run a three-milliWatt fan. (See video at http://www.engr.psu.edu/ce/enve/MFC-pictures.html) Calculations show that a typical wastewater treatment plant that had a Penn State MFC in place could power the fan with just 5.5 oz of wastewater or a reactor smaller than a teacup.

The advance is described in a paper, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, released online and scheduled for a future issue of Environmental Science and Technology. The authors are Dr. Hong Liu, postdoctoral researcher in environmental engineering, and Logan.

The Penn State team modified their original fuel cell by removing the polymeric proton exchange membrane (PEM) that previously was bonded to the cathode and substituting carbon paper for the electrodes.

Microbial fuel cells produce current through the action of bacteria that can pass electrons to an anode, the negative electrode of a fuel cell. The electrons flow from the anode through a wire to a cathode, the positive electrode of a fuel cell, where they combine with hydrogen ions (protons) and oxygen to form water.

The naturally-occurring bacteria in wastewater drive power production via a reaction that allows them to transport electrons from their cell surface to the anode. In addition, a reaction (oxidation) that occurs in the interior of the bacterial cell lowers the biochemical oxygen demand, cleaning the water.

The new prototype consists of carbon paper placed on opposite ends of a plastic tube about an inch and a half long and a little over an inch in diameter. Carbon paper on one end is the anode and carbon paper, which also contains a small amount of platinum, forms the cathode on the other end. Platinum wire completes the circuit. The carbon paper allows oxygen in air to directly react at the cathode. So, there is no need to bubble air into the water at the cathode as is required in a typical two chamber MFC.

Logan notes, "By eliminating the PEM, which was one of the most expensive components, we bring the cost down significantly. Substituting carbon paper for graphite rods further reduces the cost. I’m optimistic that MFCs may be able to help reduce the $25 billion annual cost of wastewater treatment in the U.S. and provide access to sanitation technologies to countries throughout the world."


The project was supported by a grant from the National Science Foundation and Penn State’s Huck Institute of Life Sciences.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>