Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny computing machine fueled by DNA

25.02.2003


The device was awarded the Guinness World Record for "smallest biological computing device"



Fifty years after the discovery of the structure of DNA, a new use has been found for this celebrated molecule: fuel for molecular computation systems. The research, conducted by scientists at the Weizmann Institute of Science, will appear in this week’s issue of Proceedings of the National Academy of Sciences USA (PNAS).

Whether plugged in or battery powered, computers need energy. Around a year ago, Prof. Ehud Shapiro of the Weizmann Institute made international headlines for devising a programmable molecular computing machine composed of enzymes and DNA molecules. Now his team has made the device uniquely frugal: the single DNA molecule that provides the computer with the input data also provides all the necessary fuel.


The source of fuel of the earlier device was a molecule called ATP, the standard energy currency of all life forms. The redesigned device processes its DNA input molecule using only spontaneous, energy releasing operations. It breaks two bonds in the DNA input molecule, releasing the energy stored in these bonds as heat. This process generates sufficient energy to carry out computations to completion without any external source of energy.

A spoonful (5 milliliters) of "computer soup" can contain 15,000 trillion such computers, together performing 330 trillion operations per second with 99.9% accuracy per step. These computers need very little energy (all supplied, as mentioned, by the input molecule) and together release less than 25 millionths of a watt as heat.

The device was recently awarded the Guinness World Record for "smallest biological computing device."


###
The study was carried out by Yaakov Benenson, Dr. Rivka Adar, Dr. Tamar Paz-Elizur, Prof. Zvi Livneh and Prof. Ehud Shapiro of the Institute’s Biological Chemistry Department and the Computer Science and Applied Mathematics Department.

Prof. Ehud Shapiro’s research is supported by the Dolfi and Lola Ebner Center for Biomedical Research, Yad Hanadiv, the Robert Rees Fund for Applied Research and the Samuel R. Dweck Foundation.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/udi
http://www.weizmann.ac.il/

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Scientists propose new theory on Alzheimer's, amyloid connection

23.04.2019 | Life Sciences

Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect

23.04.2019 | Life Sciences

Bacteria use their enemy -- phage -- for 'self-recognition'

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>